分析 根據三角形的中位線定理可得出BC=4,由AB=AC,可證明BG=CF=2,由勾股定理求出CE,即可得出AC的長.
解答 解:∵點D、E分別是邊AB、AC的中點,
∴DE=$\frac{1}{2}$BC,
∵DE=4cm,
∴BC=8cm,
∵AB=AC,四邊形DEFG是正方形,
∴DG=EF,BD=CE,
在Rt△BDG和Rt△CEF,
$\left\{\begin{array}{l}{BD=CE}\\{DG=EF}\end{array}\right.$,
∴Rt△BDG≌Rt△CEF,
∴BG=CF=2,
∴EC=2$\sqrt{5}$,
∴AC=4$\sqrt{5}$cm.
故答案為:4$\sqrt{5}$cm.
點評 本題考查了相似三角形的判定、勾股定理、等腰三角形的性質以及正方形的性質,是基礎題,比較簡單.
科目:初中數學 來源: 題型:選擇題
A. | 5個 | B. | 4個 | C. | 3個 | D. | 2個 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1 | B. | 1.5 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 65° | B. | 35° | C. | 165° | D. | 135° |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com