定義:如果一個與
的函數圖象經過平移后能與某反比例函數的圖象重合,那么稱這個函數是
與
的“反比例平移函數”.
例如:的圖象向左平移2個單位,再向下平移1個單位得到
的圖象,則
是
與
的“反比例平移函數”.
(1)若矩形的兩邊分別是2、3
,當這兩邊分別增加
(
)、
(
)后,得到的新矩形的面積為8
,求
與
的函數表達式,并判斷這個函數是否為“反比例平移函數”.
(2)如圖,在平面直角坐標系中,點為原點,矩形
的頂點
、
的坐標分別為(9,0)、(0,3) .點
是
的中點,連接
、
交于點
,“反比例平移函數”
的圖象經過
、
兩點.則這個“反比例平移函數”的表達式為 ;這個“反比例平移函數”的圖象經過適當的變換與某一個反比例函數的圖象重合,請寫出這個反比例函數的表達式 .
(3)在(2)的條件下, 已知過線段
中點的一條直線
交這個“反
比例平移函數”圖象于、
兩點(
在
的右側),若
、
、
、
為頂點組成的四邊形面積為16,請求出點
的坐標.
科目:初中數學 來源: 題型:
□ABCD的對角線相交于點O,分別添加下列條件:①AC⊥BD;②AB=BC;③AC平分∠BAD;④AO=DO,使得□ABCD是菱形的條件有 。(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
某物流公司的快遞車和貨車每天往返于甲、乙兩地,快遞車比貨車多往返一趟.
已知貨車比快遞車早1小時出發,到達乙地后用1小時裝卸貨物,然后按原路以原速返回,
結果與第二趟返回的快遞車同時到達甲地.下圖表示快遞車距離甲地的路程y(km)與貨
車出發所用時間x(h)之間的函數關系圖象.
(1)①請在下圖中畫出貨車距離甲地的路程(km)與所用時間
( h)的函數關系圖象;
②兩車在中途相遇 次.
(2)試求貨車從乙地返回甲地時(km)與所用時間
( h)的函數關系式.
(3)求快遞車第二次從甲地出發到與返程貨車相遇所用時間為多少h?這時貨車離
乙地多少km?
![]() |
查看答案和解析>>
科目:初中數學 來源: 題型:
2014年春季,北京持續多天的霧霾天氣讓環保和健康問題成為人們關注的焦點.為了美麗的北京和師生的身心健康,某校開展以“倡導綠色出行,關愛師生健康”為主題的教育活動.為了了解本校師生的出行方式,在本校范圍內隨機抽查了部分師生,將收集的數據繪制成下列不完整的兩種統計圖.
|
請根據統計圖提供的信息,解答下列問題:
(1)m = ;
(2)已知隨機抽查的教師人數為學生人數的一半,請根據上述信息補全條形統計圖,并標明相應數據;
(3)若全校師生共1800人,請你通過計算估計,全校師生乘私家車出行的有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,在平面直角坐標系中,點
,
,正六
邊形
沿
軸正方向無滑動滾動,當點
第一次落在
軸上時,點
的坐標為: ;在運動過程中,點
的縱坐標的最大值是 ;保持上述運動過程,經過
的正六邊形的頂點是 。
![]() | |||
![]() | |||
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖, Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E為BC邊的中點,連接DE.
(1)求證:DE與⊙O 相切.
(2)若tanC=,DE=2,求AD的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com