分析 (1)過(guò)E作EF∥AB,根據(jù)平行線的性質(zhì),即可得出∠A=∠AEF,∠C=∠CEF,進(jìn)而得到∠AEC=∠AEF+∠CEF=∠A+∠C;
(2)設(shè)∠BAE=α,∠DCE=β,由(1)可得,∠AEC=∠BAE+∠C=α+β,根據(jù)角的和差關(guān)系可得,∠BAF=∠EAF+∠BAE=α+2β+α=2(α+β),最后根據(jù)∠AFC=∠BAF=2(α+β),可得∠AFC=2∠AEC;
(3)設(shè)∠G=α,根據(jù)5∠AFC=2∠G,可得∠AFC=$\frac{2}{5}$α,再根據(jù)∠AFC=2∠AEC,可得∠AEC=$\frac{1}{2}$∠AFC=$\frac{1}{5}$α,最后根據(jù)四邊形AECG中,∠GCE與∠GAE互為補(bǔ)角,可得∠G+∠AEC=180°,據(jù)此可得方程α+$\frac{1}{5}$α=180°,求得∠G的度數(shù)為150°.
解答 解:(1)如圖,過(guò)E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥CD,
∴∠A=∠AEF,∠C=∠CEF,
∴∠AEC=∠AEF+∠CEF=∠A+∠C;
(2)設(shè)∠BAE=α,∠DCE=β,則
由(1)可得,∠AEC=∠BAE+∠C=α+β,
∵∠EFD=2∠C,∠EFD=∠C+∠CEF,
∴∠C=∠CEF=β,
∴∠AEF=α+2β,
又∵∠FAE=∠FEA,
∴∠FAE=α+2β,
∴∠BAF=∠EAF+∠BAE=α+2β+α=2(α+β),
又∵AB∥CD,
∴∠AFC=∠BAF=2(α+β),
∴∠AFC=2∠AEC;
(3)設(shè)∠G=α,
根據(jù)5∠AFC=2∠G,可得∠AFC=$\frac{2}{5}$α,
又∵∠AFC=2∠AEC,
∴∠AEC=$\frac{1}{2}$∠AFC=$\frac{1}{5}$α,
∵四邊形AECG中,∠GCE與∠GAE互為補(bǔ)角,
∴∠G+∠AEC=180°,
即α+$\frac{1}{5}$α=180°,
∴α=150°,
即∠G的度數(shù)為150°.
點(diǎn)評(píng) 本題主要考查了平行線的性質(zhì),三角形內(nèi)角和定理以及四邊形內(nèi)角和的綜合應(yīng)用,解決問(wèn)題的關(guān)鍵是掌握:兩直線平行,內(nèi)錯(cuò)角相等.解題時(shí)注意方程思想的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com