分析 (1)連接OE,由于BE是角平分線,則有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代換有∠OEB=∠CBE,那么利用內錯角相等,兩直線平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切線;
(2)連結DE,先根據AAS證明△CDE≌△HFE,再由全等三角形的對應邊相等即可得出CD=HF,證明∴△BEF∽△EHF,得出對應邊成比例,即可得出結論.
解答 (1)證明:如圖1,連接OE.
∵BE⊥EF,
∴∠BEF=90°,
∴BF是圓O的直徑.
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠OEB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴AC是⊙O的切線;
(2)證明:如圖2,連結DE.
∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,
∴EC=EH.
∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,
∴∠CDE=∠HFE.
在△CDE與△HFE中,$\left\{\begin{array}{l}{∠CDE=∠HFE}&{\;}\\{∠C=∠EHF=90°}&{\;}\\{EC=EH}&{\;}\end{array}\right.$,
∴△CDE≌△HFE(AAS),
∴CD=HF.
∵∠BEF=∠EHF=90°,∠BFE=∠EFH,
∴△BEF∽△EHF,
∴EF2=HF•BF,
∴EF2=CD•BF.
點評 本題主要考查了切線的判定,全等三角形的判定與性質.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com