分析 由BE⊥AD,CF⊥AD,BE=CF,以及對頂角相等:∠BDE=∠CDE,即可利用AAS證得△BED≌△CFD,然后由全等三角形的對應(yīng)邊相等,證得BD=CD,即可得AD是△ABC的中線.
解答 解:AD是△ABC的中線,理由如下:
∵BE⊥AD,CF⊥AD,
∴∠BED=∠CFD=90°,
在△BED和△CFD中,
$\left\{\begin{array}{l}{∠BDE=∠CDF}\\{∠BED=∠CFD}\\{BE=CF}\end{array}\right.$,
∴△BED≌△CFD(AAS),
∴BD=CD,
∴AD是△ABC的中線.
點(diǎn)評 此題考查了全等三角形的判定與性質(zhì).此題比較簡單,注意利用AAS證得△BED≌△CFD是解此題的關(guān)鍵,注意數(shù)形結(jié)合思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 線段比直線長 | |
B. | 過同一平面內(nèi)的兩點(diǎn),可以作三條直線 | |
C. | 一條射線有兩個(gè)端點(diǎn) | |
D. | 兩點(diǎn)之間的所有連線中,線段最短 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 平均數(shù)是15 | B. | 眾數(shù)是10 | C. | 中位數(shù)是17 | D. | 方差是$\frac{44}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com