分析 首先證明△AFC≌△BEC(SAS)推出CF=CE,△ECF是等邊三角形,當(dāng)CE⊥AB時(shí),CE的長(zhǎng)最小,最小值為$\frac{\sqrt{3}}{2}$×6=3$\sqrt{3}$,即可推出△ECF的面積的最小值是$\frac{\sqrt{3}}{4}$•(3$\sqrt{3}$)2;
解答 解:連接CA,如右圖所示,
∵四邊形ABCD是菱形,∠B=60°,AE=DF,
∴AB=BC=CD=DA,∠BAD=120°,
∴∠FAC=60°,BE=AF,AB=BC=AC,
在△AFC和△BEC中,
$\left\{\begin{array}{l}{AF=BE}\\{∠FAC=∠B}\\{AC=BC}\end{array}\right.$,
∴△AFC≌△BEC(SAS)
∴CF=CE,∠ACF=∠BCE,
又∵∠BCE+∠ECA=60°,
∴∠ECA+∠ACF=60°,
∴△ECF是等邊三角形;
當(dāng)CE⊥AB時(shí),CE的長(zhǎng)最小,最小值為$\frac{\sqrt{3}}{2}$×6=3$\sqrt{3}$,
∴△ECF的面積的最小值是$\frac{\sqrt{3}}{4}$•(3$\sqrt{3}$)2=$\frac{27\sqrt{3}}{4}$.
點(diǎn)評(píng) 本題考查菱形的性質(zhì)、最短路線問(wèn)題、等邊三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,學(xué)會(huì)利用垂線段最短解決最短問(wèn)題,屬于中考常考題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 1或-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a2•a=a3 | B. | (-a3)2=a6 | C. | (3a2)2=9a4 | D. | a3÷a3=a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com