分析 (1)連接OD,根據(jù)切線的性質(zhì)得到OD⊥BC,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)證明;
(2)連接CE,根據(jù)正切的定義和勾股定理求出AD,根據(jù)正切的定義計(jì)算即可.
解答 (1)證明:連接OD,
∵BC是⊙O的切線,
∴OD⊥BC,又∠C=90°,
∴OD∥AC,
∴∠ODA=∠CAD,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠CAD,即AD平分∠BAC;
(2)解:連接CE,
∵AE是⊙O的直徑,
∴∠ADE=90°,
∵∠OAD=∠CAD,tan∠DAC=$\frac{3}{4}$,
∴tan∠EAD=$\frac{3}{4}$,
∵tan∠DAC=$\frac{3}{4}$,AC=8,
∴CD=6,
由勾股定理得,AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=10,
∴$\frac{DE}{10}$=$\frac{3}{4}$,
解得,DE=$\frac{15}{2}$,
∴AE=$\sqrt{A{D}^{2}+D{E}^{2}}$=$\frac{25}{2}$,
∴⊙O的半徑為$\frac{25}{4}$.
點(diǎn)評(píng) 本題考查的是切線的性質(zhì)、銳角三角函數(shù)的定義,掌握?qǐng)A的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1:$\sqrt{3}$ | B. | 1:$\sqrt{2}$ | C. | 1:3 | D. | 1:2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com