分析 (1)結(jié)論:FG=CE,F(xiàn)G∥CE.如圖1中,設(shè)DE與CF交于點M,首先證明△CBF≌△DCE,推出DE⊥CF,再證明四邊形EGFC是平行四邊形即可.
(2)結(jié)論仍然成立.如圖2中,設(shè)DE與CF交于點M,首先證明△CBF≌△DCE,推出DE⊥CF,再證明四邊形EGFC是平行四邊形即可.
解答 解:(1)結(jié)論:FG=CE,F(xiàn)G∥CE.
理由:如圖1中,設(shè)DE與CF交于點M.
∵四邊形ABCD是正方形,
∴BC=CD,∠ABC=∠DCE=90°,
在△CBF和△DCE中,
$\left\{\begin{array}{l}{BF=CE}\\{∠CBF=∠ECD}\\{BC=CD}\end{array}\right.$,
∴△CBF≌△DCE,
∴∠BCF=∠CDE,CF=DE,
∵∠BCF+∠DCM=90°,
∴∠CDE+∠DCM=90°,
∴∠CMD=90°,
∴CF⊥DE,
∵GE⊥DE,
∴EG∥CF,
∵EG=DE,CF=DE,
∴EG=CF,
∴四邊形EGFC是平行四邊形.
∴GF=EC,
∴GF=EC,GF∥EC.
故答案為:FG=CE,F(xiàn)G∥CE;
(2)結(jié)論仍然成立.
理由:如圖2中,設(shè)DE與CF交于點M.
∵四邊形ABCD是正方形,
∴BC=CD,∠ABC=∠DCE=90°,
在△CBF和△DCE中,
$\left\{\begin{array}{l}{BF=CE}\\{∠CBF=∠ECD}\\{BC=CD}\end{array}\right.$,
∴△CBF≌△DCE,
∴∠BCF=∠CDE,CF=DE,
∵∠BCF+∠DCM=90°,
∴∠CDE+∠DCM=90°,
∴∠CMD=90°,
∴CF⊥DE,
∵GE⊥DE,
∴EG∥CF,
∵EG=DE,CF=DE,
∴EG=CF,
∴四邊形EGFC是平行四邊形.
∴GF=EC,
∴GF=EC,GF∥EC.
點評 本題三角形與四邊形綜合問題,涉及全等三角形的判定與性質(zhì),平行四邊形的判定與性質(zhì).解題的關(guān)鍵是利用全等三角形的對應(yīng)邊相等進行線段的等量代換,從而求證出平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com