分析 先去絕對值符號,再求出方程組的解即可.
解答 解:當x≥0,y≥0時,原方程組可化為$\left\{\begin{array}{l}{x+y=1}\\{x+2y=3}\end{array}\right.$①或$\left\{\begin{array}{l}{x+y=-1}\\{x+2y=3}\end{array}\right.$②;
當x>0,y<0時,原方程組可化為$\left\{\begin{array}{l}{x+y=1}\\{x-2y=3}\end{array}\right.$③或$\left\{\begin{array}{l}{x+y=-1}\\{x-2y=3}\end{array}\right.$④;
當x<0,y≥0時,原方程組可化為$\left\{\begin{array}{l}{x+y=1}\\{-x+2y=3}\end{array}\right.$⑤或$\left\{\begin{array}{l}{x+y=-1}\\{-x+2y=3}\end{array}\right.$⑥;
當x<0,y<0時,原方程組可化為$\left\{\begin{array}{l}{x+y=1}\\{-x-2y=3}\end{array}\right.$⑦或$\left\{\begin{array}{l}{x+y=-1}\\{-x-2y=3}\end{array}\right.$⑧.
解①得$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$(不合題意);解②$\left\{\begin{array}{l}{x=-5}\\{y=4}\end{array}\right.$(不合題意);解③得$\left\{\begin{array}{l}{x=\frac{5}{3}}\\{y=-\frac{2}{3}}\end{array}\right.$;解④得$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=-\frac{4}{3}}\end{array}\right.$;
解⑤得$\left\{\begin{array}{l}{x=-\frac{1}{3}}\\{y=\frac{4}{3}}\end{array}\right.$;解⑥得$\left\{\begin{array}{l}{x=-\frac{5}{3}}\\{y=\frac{2}{3}}\end{array}\right.$;解⑦得$\left\{\begin{array}{l}{x=5}\\{y=-4}\end{array}\right.$(不合題意);解⑧得$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$(不合題意).
故原方程組的解為:$\left\{\begin{array}{l}{x=\frac{5}{3}}\\{y=-\frac{2}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=-\frac{4}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{1}{3}}\\{y=\frac{4}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{5}{3}}\\{y=\frac{2}{3}}\end{array}\right.$.
點評 本題考查的是解二元一次方程組,熟知解二元一次方程組的加減消元法和代入消元法是解答此題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1cm,2cm,3.5cm | B. | 3cm,4cm,6cm | C. | 4cm,5cm,9cm | D. | 3cm,3cm,6cm |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com