[方法二]:(向量法)
解析:如圖所示,以D為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,
則D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),
即異面直線DM與SB所成的角為 ……………12分
∴
又
∴在△DMP中,有DP2=MP2+DM2,
,
∴是異面直線DM與SB所成的角.
解法二:如圖取AB中點(diǎn)P,連結(jié)MP,DP.
在△ABS中,由中位線定理得 MP//SB,
(III)解法一:如圖
∵SD=AD=1,∠SDA=90°,
∴△SDA是等腰直角三角形.
又M是斜邊SA的中點(diǎn),
∴DM⊥SA.
∵BA⊥AD,BA⊥SD,AD∩SD=D,
∴BA⊥面ASD,SA是SB在面ASD上的射影.
由三垂線定理得DM⊥SB.
∴異面直線DM與SB所成的角為90°. ……………12分
在Rt△SCB中,由勾股定理得SC=;在Rt△SDC中,由勾股定理得SD=1.
∴∠CSD=45°.即面ASD與面BSC所成的二面角為 45°. …………8分
∴,
∴∠CSD為面ASD與面BSC所成二面角的平面角.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com