分析 由題意可知:(Sn+1-Sn)=2Sn+1,Sn+1=3Sn+1,即Sn+1+$\frac{1}{2}$=3(Sn+$\frac{1}{2}$),$\{{S_n}+\frac{1}{2}\}$是以$\frac{3}{2}$為首項,3為公比的等比數列,由等比數列的通項公式即可求得Sn+$\frac{1}{2}$=$\frac{3}{2}$•3n-1,當n=4,代入即可求得S4的值.
解答 解:由題意得,由an+1=2Sn+1,則(Sn+1-Sn)=2Sn+1,整理得:Sn+1=3Sn+1,
∴Sn+1+$\frac{1}{2}$=3(Sn+$\frac{1}{2}$),
∴$\{{S_n}+\frac{1}{2}\}$是以$\frac{3}{2}$為首項,3為公比的等比數列,
由等比數列的通項公式可知:Sn+$\frac{1}{2}$=$\frac{3}{2}$•3n-1,
S4=$\frac{3}{2}$•33-$\frac{1}{2}$=40,
故答案為:40.
點評 本題考查等比數列的通項公式,考查利用構造等比數列求數列的通項公式的方法,考查計算能力,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 36π | B. | 4π | C. | $\frac{27}{4}$π | D. | $\frac{27}{2}$π |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,1] | B. | (-1,1) | C. | (-1,1] | D. | (-1,0) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com