日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
3.在平面直角坐標系xOy中,圓C:x2+y2=4,A($\sqrt{3}$,0),A1(-$\sqrt{3}$,0),點P為平面內一動點,以PA為直徑的圓與圓C相切.
(Ⅰ)求證:|PA1|+|PA|為定值,并求出點P的軌跡方程C1;
(Ⅱ)若直線PA與曲線C1的另一交點為Q,求△POQ面積的最大值.

分析 (Ⅰ)兩圓的圓心距d=|OM|=$\frac{1}{2}$|PA1|=R-$\frac{1}{2}$|PA|,得到點P的軌跡是以A,A1為焦點,以4為長軸的橢圓,即可證明:|PA1|+|PA|為定值,并求出點P的軌跡方程C1;
(Ⅱ)若直線PA與曲線C1的另一交點為Q,求出面積,換元,即可求△POQ面積的最大值.

解答 (Ⅰ)證明:設點P(x,y),記線段PA的中點為M,則
兩圓的圓心距d=|OM|=$\frac{1}{2}$|PA1|=R-$\frac{1}{2}$|PA|,
所以,|PA1|+|PA|=4>2$\sqrt{3}$,
故點P的軌跡是以A,A1為焦點,以4為長軸的橢圓,
所以,點P的軌跡方程C1為:$\frac{{x}^{2}}{4}+{y}^{2}$=1.            …(5分)
(Ⅱ)解:設P(x1,y1),Q(x2,y2),直線PQ的方程為:x=my+$\sqrt{3}$,…(6分)
代入$\frac{{x}^{2}}{4}+{y}^{2}$=1消去x,整理得:(m2+4)y2+2$\sqrt{3}$my-1=0,
則y1+y2=-$\frac{2\sqrt{3}m}{{m}^{2}+4}$,y1y2=-$\frac{1}{{m}^{2}+4}$,…(8分)
△POQ面積S=$\frac{1}{2}$|OA||y1-y2|=2$\sqrt{3}$$•\sqrt{-\frac{3}{({m}^{2}+4)^{2}}+\frac{1}{{m}^{2}+4}}$…(10分)
令t=$\frac{1}{{m}^{2}+4}$(0$<t≤\frac{1}{4}$,則S=2$\sqrt{3}•\sqrt{-3{t}^{2}+t}$≤1(當且僅當t=$\frac{1}{6}$時取等號)
所以,△POQ面積的最大值1. …(12分)

點評 本題考查橢圓的定義,考查圓與圓的位置關系,考查直線與橢圓的位置關系,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

13.在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業,根據以往經驗,潛水員下潛的平均速度為v(米/單位時間),每單位時間的用氧量為${(\frac{v}{10})^3}+1$(升),在水底作業10個單位時間,每單位時間用氧量為0.9(升),返回水面的平均速度為$\frac{v}{2}$(米/單位時間),每單位時間用氧量為1.5(升),記該潛水員在此次考察活動中的總用氧量為y(升).
(1)求y關于v的函數關系式;
(2)若c≤v≤15(c>0),求當下潛速度v取什么值時,總用氧量最少.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.在△ABC中,若BC=$\sqrt{3}$,AC=3,∠C=$\frac{π}{6}$,則AB=$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.下列四個命題:(1)函數f(x)在[0,+∞)上是增函數,在(-∞,0)上也是增函數,所以f(x)在R上是增函數;(2)若函數f(x)=ax2+bx+2與x軸沒有交點,則b2-8a<0,且a>0; (3)y=x2-2|x|-3的遞增區間為[1,+∞);(4)函數y=lg10x和函數y=elnx表示相同函數.其中正確命題的個數是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.計算
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-9.60-(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2   (2)log225•log32$\sqrt{2}$•log59.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.已知某算法的程序語言如圖所示,則可算得f(-1)+f($\frac{1}{e}$)的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.平面內動點G到點F(2,0)的距離與到直線x=-2距離相等.
(Ⅰ)求動點G的軌跡方程C;
(Ⅱ)設過點F的直線l交動點G的軌跡于A(x1,y1),B(x2,y2)兩點,求y1•y2值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$不共線,$\overrightarrow{c}$=k$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrowp9vv5xb5$=$\overrightarrow{a}$-$\overrightarrow$,如果$\overrightarrow{c}$∥$\overrightarrowp9vv5xb5$,那么( 。
A.k=1且$\overrightarrow{c}$與$\overrightarrowp9vv5xb5$同向B.k=1且$\overrightarrow{c}$與$\overrightarrowp9vv5xb5$反向C.k=-1且$\overrightarrow{c}$與$\overrightarrowp9vv5xb5$同向D.k=-1且$\overrightarrow{c}$與$\overrightarrowp9vv5xb5$反向

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.曲線$\left\{{\begin{array}{l}{x=t-8}\\{y={t^2}-t}\end{array}}\right.$(t為參數)與x軸的交點坐標是( 。
A.(8,0),(-7,0).B.(-8,0),(-7,0)C.(8,0),(7,0).D.(-8,0),(7,0)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲一区二区视频免费观看 | 亚洲网在线 | 久在线视频 | a一级毛片 | 欧美国产视频 | 欧美综合色 | 女人色偷偷aa久久天堂 | 国产精品久久久久久久久久三级 | 青青青久草| 黄色一级片在线看 | 日本va欧美va精品发布 | 视频二区 | 国产黑人在线 | 一区二区三区四区精品 | 国产视频一区二区 | 一区二区欧美在线 | 成人午夜sm精品久久久久久久 | 久久精品免费视频观看 | 国产福利在线播放 | 夜夜久久| 亚洲成人一区二区三区 | 国产精品成人一区二区网站软件 | 污视频链接 | 天天射夜夜爽 | 久久精品天堂 | 成人黄色免费观看 | 九九热精品视频 | 妞干网福利视频 | 亚洲精品成人av | 中文日韩在线 | 日本一区二区三区四区 | 区一区二区三在线观看 | 成人精品一区二区三区 | 性生生活大片免费看视频 | 亚色中文字幕 | 草青青视频 | 91精品久久久久久久久久入口 | 91福利在线导航 | 看欧美黄色录像 | 麻豆国产一区二区三区四区 | 久久久免费电影 |