分析 (1)將函數進行化簡,再利用周期公式求ω的值.
(2)當x在區間$[{0,\frac{5π}{6}}]$上時,求出內層函數的取值范圍,結合三角函數的圖象和性質,求單調性.
解答 解:函數$f(x)=4cosωxcos(ωx+\frac{π}{3}),(ω>0)$.
化簡得Lf(x)=4cosωx($\frac{1}{2}$cosωx-$\frac{\sqrt{3}}{2}$sinωx)=2cos2ωx-$\sqrt{3}$sin2ωx=1+cos2ωx-$\sqrt{3}$sin2ωx=2cos(2ωx$+\frac{π}{3}$)+1.
(1)因為函數$f(x)=4cosωxcos(ωx+\frac{π}{3}),(ω>0)$的最小正周期為π,即T=$\frac{2π}{2ω}=π$,
解得:ω=1,
則:f(x)=2cos(2x$+\frac{π}{3}$)+1.
故得ω的值為1,
(2)由(1)可得f(x)=2cos(2x$+\frac{π}{3}$)+1.
當x在區間$[{0,\frac{5π}{6}}]$上時,故得:$\frac{π}{3}≤2x+\frac{π}{3}≤2π$,
當$\frac{π}{3}$$≤2x+\frac{π}{3}≤π$時,即$0≤x≤\frac{π}{3}$時,函數f(x)=2cos(2x$+\frac{π}{3}$)+1為減函數.
當π$≤2x+\frac{π}{3}≤2π$時,即$\frac{π}{3}≤x≤\frac{5π}{6}$時,函數f(x)=2cos(2x$+\frac{π}{3}$)+1為增函數.
所以,函數f(x)=2cos(2x$+\frac{π}{3}$)+1為減區間為$[0,\frac{π}{3}]$,增區間為$[\frac{π}{3},\frac{5π}{6}]$.
點評 本題主要考查對三角函數的化簡能力和三角函數的圖象和性質的運用,利用三角函數公式將函數進行化簡是解決本題的關鍵.屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | y=5${\;}^{\frac{1}{2-x}}$ | B. | y=log2(3x+2) | C. | y=$\sqrt{1-{2}^{x}}$ | D. | y=($\frac{1}{3}$)1-x |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com