分析 (1)利用數列的遞推關系式,轉化等差數列的定義證明即可,然后求解通項公式.
(2)化簡數列的通項公式,利用裂項消項法求解數列的和即可.
解答 解:(1)證明:∵${a_{n+1}}=\frac{a_n}{{2{a_n}+1}}$,∴$\frac{1}{{{a_{n+1}}}}=2+\frac{1}{a_n}$,∴$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=2$,
又$\frac{1}{a_1}=1$,∴數列$\{\frac{1}{a_n}\}$是以1為首項,2為公差的等差數列
∴$\frac{1}{a_n}=2n-1$,∴${a_n}=\frac{1}{2n-1}(n∈{N^*})$…6分
(2)由(1)知,${b_n}={(-1)^n}\frac{n}{(2n-1)(2n+1)}=\frac{1}{4}×{(-1)^n}×(\frac{1}{2n-1}+\frac{1}{2n+1})$
∴Tn=b1+b2+b3+…+bn=$\frac{1}{4}[-(\frac{1}{1}+\frac{1}{3})+(\frac{1}{3}+\frac{1}{5})-(\frac{1}{5}+\frac{1}{7})+…+{(-1)^n}(\frac{1}{2n-1}+\frac{1}{2n+1})]$
=$\frac{1}{4}[-1+{(-1)^n}\frac{1}{2n+1}]$…12分.
點評 本題考查數列的遞推關系式的應用,考查計算能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-2,3) | B. | [3,5] | C. | (-3,5] | D. | (-∞,-3)∪[-2,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com