日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
10.已知函數f(x)=cos2(x-$\frac{π}{6}$)-sin2x
(1)求f($\frac{π}{12}$)的值
(2)求f(x)的單調增區間
(3)若對于任意的x∈[0,$\frac{π}{2}$],都有f(x)≤c,求實數c的取值范圍.

分析 (1)利用三角恒等變換,化簡f(x)的解析式,從而求得f($\frac{π}{12}$)的值.
(2)利用余弦函數的單調性,求得f(x)的單調增區間.
(3)利用余弦函數的定義域和值域,求得余弦函數的最大值,可得實數c的取值范圍.

解答 解:(1)函數f(x)=cos2(x-$\frac{π}{6}$)-sin2x=$\frac{1+cos(2x-\frac{π}{3})}{2}$-$\frac{1-cos2x}{2}$=$\frac{1}{2}$(cos2x•$\frac{1}{2}$+sin2x•$\frac{\sqrt{3}}{2}$+cos2x)
=$\sqrt{3}$($\frac{\sqrt{3}}{2}$cos2x+$\frac{1}{2}$sin2x)=$\sqrt{3}$cos(2x-$\frac{π}{6}$ ),
∴f($\frac{π}{12}$)=$\sqrt{3}$cos0=$\frac{\sqrt{3}}{2}$.
(2)令 2kπ-π≤2x-$\frac{π}{6}$≤2kπ,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,故函數的增區間為 $[-\frac{5π}{12}+kπ,\frac{π}{12}+kπ](k∈z)$.
(3)對于任意的x∈[0,$\frac{π}{2}$],2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],cos(2x-$\frac{π}{6}$)∈[-$\frac{\sqrt{3}}{2}$,1],故f(x)的最大值為$\sqrt{3}$,
∴c≥$\sqrt{3}$.

點評 本題主要考查三角恒等變換,余弦函數的單調性,函數的恒成立問題,求余弦函數的最值,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

20.一個三棱錐的三視圖如圖所示,則該幾何體的體積為(  )
A.1B.$\frac{4\sqrt{3}}{3}$C.$\frac{8\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.若函數f(x)在R上可導,f(x)=2xf'(e)+lnx,則f'(e)=(  )
A.1B.-1C.$-\frac{1}{e}$D.-e

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知直線l1:2x-3y+1=0,直線l2過點(1,1)且與直線l1垂直.
(1)求直線l2的方程;
(2)求直線l2與兩坐標軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.以下判斷正確的序號是(2)(3)(4)
(1)函數y=f(x)為R上的可導函數,則f′(x0)=0是x0為函數f(x)極值點的充要條件.
(2)$\int_0^4{(|x-1|+|x-3|)}dx$=10.
(3)已知函數f(x)=x3+x,對任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,則x的取值范圍為(-2,$\frac{2}{3}$).
(4)設f1(x)=cosx,定義fn+1(x)為fn(x)的導數,即fn+1(x)=f′n(x)n∈N,若△ABC的內角A滿足${f_1}(A)+{f_2}(A)+…+{f_{2014}}(A)=\frac{1}{3}$,則sin2A=$\frac{8}{9}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.數列{an}的前n項和記為Sn,a1=l,an+1=2Sn+1 (n≥1)
(I)求{ an }的通項公式;
(Ⅱ)等差數列{bn}的各項為正,其前n項和為Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比數列,求數列{$\frac{1}{{T}_{n}}$}的前n項和An

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.已知角α的終邊經過點P(4,-3),那么cosα-sinα的值是(  )
A.$\frac{1}{5}$B.-$\frac{7}{5}$C.$-\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.己知某幾何體的三視圖如圖所示,則其表面積為(  )
A.6+4$\sqrt{2}$B.4+4$\sqrt{2}$C.2D.8

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知下列命題:
①?x∈(0,2),3x>x3的否定是:?x∈(0,2),3x≤x3
②若f(x)=2x-2-x,則?x∈R,f(-x)=-f(x);
③若f(x)=x+$\frac{1}{x+1}$,?x0∈(0,+∞),f(x0)=1;
④在△ABC中,若A>B,則sin A>sin B.
其中真命題是①②④.(將所有真命題序號都填上)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 九九精品网 | 成人毛片网 | 成人欧美日韩 | 成人在线免费视频观看 | 久久久久久久久久国产 | 超碰在线视屏 | 免费观看黄色片 | 中文一区二区 | 毛片久久 | 国产成人三级一区二区在线观看一 | 三级视频在线播放 | 欧美日韩一区二区三区 | 精品久久久久久久 | 国产九九九 | 毛片网站在线观看 | 午夜视频免费在线观看 | 黄色一级小说 | 狠狠干免费视频 | 国产九九 | 精品黄色片| 日韩色综合 | 黄色一级录像 | 亚洲最大黄色 | 青青在线视频 | 欧美性猛交xxxx黑人交 | 欧美日韩成人在线观看 | 91黄色免费视频 | 成人三级在线观看 | 成人毛片在线播放 | 黄色www| 精品国产一区二区三区四区 | 久热精品在线 | 成人一区二区视频 | 91蝌蚪少妇| 国产乱码精品一区二区三 | 日韩一级免费 | 欧美成人极品 | 中文字幕在线看 | 三级理论片 | 欧美理伦| 免费观看毛片 |