A. | $-\frac{16}{65}$ | B. | $\frac{56}{65}$ | C. | $\frac{16}{65}$ | D. | $-\frac{56}{65}$ |
分析 比較題設條件與結論,可知應利用角的關系2α=(α+β)+(α-β)求解.
解答 解:∵sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β),
又∵$\frac{π}{2}<α<β<\frac{3π}{4},cos({α-β})=\frac{12}{13},sin({α+β})=-\frac{3}{5}$,
∴-$\frac{π}{4}$<α-β<0,π<α+β<$\frac{3π}{2}$,
∴sin(α-β)=-$\frac{5}{13}$,cos(α+β)=-$\frac{4}{5}$,
∴sin2α=(-$\frac{5}{13}$)×$\frac{12}{13}$-$\frac{4}{5}$×(-$\frac{5}{13}$)=-$\frac{16}{65}$.
故選:A.
點評 本題主要考查了兩角和的正弦函數公式,同角三角函數基本關系式在三角函數化簡求值中的應用,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 30 | B. | 31 | C. | 62 | D. | 63 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2:3 | B. | 4:3 | C. | 3:1 | D. | 3:2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com