日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

10.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F,直線y=$\frac{4}{3}$x與雙曲線相交于A、B兩點(diǎn).若AF⊥BF,則雙曲線的漸近線方程為y=±2x.

分析 求得雙曲線的右焦點(diǎn),將直線y=$\frac{4}{3}$x代入雙曲線方程,求得x2=$\frac{9{a}^{2}{b}^{2}}{9{b}^{2}-16{a}^{2}}$,則設(shè)A(x,$\frac{4}{3}x$),B(-x,-$\frac{4}{3}x$),$\overrightarrow{FA}$=(x-c,$\frac{4}{3}x$),$\overrightarrow{FB}$=(-x-c,-$\frac{4}{3}x$),由$\overrightarrow{FA}$•$\overrightarrow{FB}$=0,根據(jù)向量數(shù)量積的坐標(biāo)表示,求得c2=$\frac{25}{9}$x2,由雙曲線的方程可知:c2=a2+b2,代入即可求得(b2-4a2)(9b2+4a2)=0,則可知b2-4a2=0,即可求得b=2a,根據(jù)雙曲線的漸近線方程可知:y=±$\frac{b}{a}$x=±2x.

解答 解:由題意可知:雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)焦點(diǎn)在x軸上,右焦點(diǎn)F(c,0),
則$\left\{\begin{array}{l}{y=\frac{4}{3}x}\\{\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,整理得:(9b2-16a2)x2=9a2b2,即x2=$\frac{9{a}^{2}{b}^{2}}{9{b}^{2}-16{a}^{2}}$,
∴A與B關(guān)于原點(diǎn)對(duì)稱,設(shè)A(x,$\frac{4}{3}x$),B(-x,-$\frac{4}{3}x$),
$\overrightarrow{FA}$=(x-c,$\frac{4}{3}x$),$\overrightarrow{FB}$=(-x-c,-$\frac{4}{3}x$),
∵AF⊥BF,
∴$\overrightarrow{FA}$•$\overrightarrow{FB}$=0,即(x-c)(-x-c)+$\frac{4}{3}x$×(-$\frac{4}{3}x$)=0,
整理得:c2=$\frac{25}{9}$x2
∴a2+b2=$\frac{25}{9}$×$\frac{9{a}^{2}{b}^{2}}{9{b}^{2}-16{a}^{2}}$,即9b4-32a2b2-16a4=0,
∴(b2-4a2)(9b2+4a2)=0,
∵a>0,b>0,
∴9b2+4a2≠0,
∴b2-4a2=0,
故b=2a,
雙曲線的漸近線方程y=±$\frac{b}{a}$x=±2x,
故答案為:y=±2x.

點(diǎn)評(píng) 本題考查雙曲線與直線的位置關(guān)系,向量數(shù)量積的坐標(biāo)表示,向量垂直的充要條件,雙曲線的漸近線方程,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.定義在實(shí)數(shù)集上的函數(shù)f(x)=x2+ax(a為常數(shù)),g(x)=$\frac{1}{3}$x3-bx+m(b為常數(shù)),若函數(shù)f(x)在x=1處的切線斜率為3,x=$\sqrt{2}$是g(x)的一個(gè)極值點(diǎn)
(1)求a,b的值;
(2)若存在x∈[-4,4]使得f(x)≥g(x)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=ax在區(qū)間[0,1]上的最大值是最小值的2倍,則a的值為(  )
A.2B.$\frac{\sqrt{2}}{2}$C.2或$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$或$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a>0,b>0,a+b=2,則下列不等式不恒成立的是(  )
A.ab≤1B.a2+b2≥2C.$\sqrt{a}$+$\sqrt{b}$≤$\sqrt{2}$D.$\frac{1}{a}$+$\frac{1}{b}$≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知點(diǎn)A(2,8),B(x1,y1),C(x2,y2)都在拋物線y2=2px上,△ABC的重心與此拋物線的焦點(diǎn)F重合(如圖)
(1)寫出該拋物線的方程和焦點(diǎn)F的坐標(biāo);
(2)求線段BC中點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若定義在R上的偶函數(shù)f(x)滿足f(x-1)=f(x+1).且當(dāng)x∈[-1,0]時(shí),f(x)=-x2+1,如果函數(shù)g(x)=f(x)-a|x|恰有8個(gè)零點(diǎn),則實(shí)數(shù)a的值為8-2$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x1=$\int{\begin{array}{l}1\\ 0\end{array}}\sqrt{1-{x^2}}$dx,x2=e-1.1(其中e為自然對(duì)數(shù)的底數(shù)),實(shí)數(shù)x3滿足$\frac{1}{{{x_3}^2}}=lg{x_3}$,則x1,x2,x3的大小關(guān)系為(  )
A.x1>x2>x3B.x2>x1>x3C.x3>x2>x1D.x3>x1>x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.解下列不等式
(1)2x2-3x+1<0                       
(2)$\frac{2x}{x+1}$≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.下列四個(gè)命題:
①定義在R上的函數(shù)f(x)滿足f(-2)=f(2),則f(x)不是奇函數(shù)
②定義在R上的函數(shù)f(x)恒滿足f(-x)=|f(x)|,則f(x)一定是偶函數(shù)
③一個(gè)函數(shù)的解析式為y=x2,它的值域?yàn)閧0,1,4},這樣的不同函數(shù)共有9個(gè)
④設(shè)函數(shù)f(x)=lnx,則對(duì)于定義域中的任意x1,x2(x1≠x2),恒有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,
其中為真命題的序號(hào)有②③④(填上所有真命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 四虎网址 | 欧美中文字幕一区 | 秋霞成人 | 成人欧美一区二区三区在线播放 | 欧美亚洲一 | 日本黄色免费观看 | 国产精品爱久久久久久久 | 国产欧美久久一区二区三区 | 国产黄色免费 | 久久精品这里热有精品 | 国产一区在线观看视频 | 亚洲精品国品乱码久久久久 | 狠狠撸在线视频 | 欧美一区二区影院 | 欧美激情精品久久久久 | 国产成人精品一区二区在线 | 精品国产91亚洲一区二区三区www | 国产精品一区二区久久乐夜夜嗨 | 欧美一区二区三区 | 麻豆毛片| 久久r免费视频 | 成人免费影院 | 午夜探花| 午夜在线电影 | 亚洲精品v | www.99re| 国产精品99久久久久久动医院 | 中文字幕 视频一区 | 一区不卡 | 日韩视频中文字幕 | 成人欧美一区二区三区黑人孕妇 | 欧美精品亚洲精品 | 久久中文字幕一区 | 银杏成人影院在线观看 | 毛片av网站 | 欧美激情自拍偷拍 | 日本无卡视频 | 黄色av网站在线观看 | 久久新| 国产精品美女久久久久aⅴ国产馆 | 超级黄色一级片 |