A. | $\frac{4}{3}$ | B. | $\frac{4}{9}$ | C. | $\sqrt{6}-2$ | D. | $3\sqrt{6}-6$ |
分析 由三視圖知幾何體是一個三棱錐,三棱錐的底面是一個底邊是2,高是2的三角形,三棱錐的高是2,利用等積法得到關于r的等式,求得r.
解答 解:由三視圖知幾何體是一個三棱錐,
三棱錐的底面是一個底邊是2,高是2的三角形,如圖
各側面面積分別為$\frac{1}{2}×2×2$=2,2,以及$\frac{1}{2}×\sqrt{2}×\sqrt{3}$,$\frac{\sqrt{6}}{2}$,三棱錐的高是2,
設內切球半徑為r,則$2×\frac{1}{3}×2r+2×\frac{1}{3}×\frac{\sqrt{6}}{2}r=\frac{1}{3}×2×2$,解得r=$\sqrt{6}-2$;
故選C.
點評 本題考查由三視圖還原幾何體并且看出幾何體各個部分的長度,本題解題的關鍵是利用等積法方程思想求半徑.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}-\sqrt{6}}}{4}$ | B. | $\frac{{\sqrt{6}-\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | D. | $-\frac{{\sqrt{6}-\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4π}{3}$+$\frac{9\sqrt{3}}{4}$ | B. | $\frac{4π}{3}$+$\frac{27\sqrt{3}}{4}$ | C. | $\frac{8π}{3}$+$\frac{9\sqrt{3}}{4}$ | D. | $\frac{8π}{3}$+$\frac{27\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com