日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

11.已知向量$\overrightarrow a≠\overrightarrow e$,$|\overrightarrow e|=1$,對任意t∈R,恒有$|\overrightarrow a-t\overrightarrow e|≥|\overrightarrow a-2\overrightarrow e|$,則(  )
A.$\overrightarrow a⊥\overrightarrow e$B.$\overrightarrow a⊥(\overrightarrow a-2\overrightarrow e)$C.$\overrightarrow e⊥(\overrightarrow a-2\overrightarrow e)$D.$(\overrightarrow a+2\overrightarrow e)⊥(\overrightarrow a-2\overrightarrow e)$

分析 對|$\overrightarrow{a}$-t$\overrightarrow{e}$|≥|$\overrightarrow{a}$-2$\overrightarrow{e}$|兩邊平方可得關(guān)于t的一元二次不等式 t2-2$\overrightarrow{a}$•$\overrightarrow{e}$t+4$\overrightarrow{a}$•$\overrightarrow{e}$-4≥0,為使得不等式恒成立,則一定有△≤0.

解答 解:已知向量$\overrightarrow{a}$≠$\overrightarrow{e}$,|$\overrightarrow{e}$|=1,
對任意t∈R,恒有|$\overrightarrow{a}$-t$\overrightarrow{e}$|≥|$\overrightarrow{a}$-2$\overrightarrow{e}$|,
即|$\overrightarrow{a}$-t$\overrightarrow{e}$|2≥|$\overrightarrow{a}$-2$\overrightarrow{e}$|2,∴t2-2$\overrightarrow{a}$•$\overrightarrow{e}$t+4$\overrightarrow{a}$•$\overrightarrow{e}$-4≥0,
即△=(2$\overrightarrow{a}$•$\overrightarrow{e}$)2-4(4$\overrightarrow{a}$•$\overrightarrow{e}$-4)≤0,
即($\overrightarrow{a}$•$\overrightarrow{e}$-2)2≤0,
∴$\overrightarrow{a}$•$\overrightarrow{e}$-2=0,$\overrightarrow{a}$•$\overrightarrow{e}$-2$\overrightarrow{e}$2=0,
∴$\overrightarrow{e}$•($\overrightarrow{a}$-2$\overrightarrow{e}$)=0,
故選C

點評 本題主要考查向量的長度即向量的模的有關(guān)問題,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.某班主任對全班40名學生進行了作業(yè)量多少的調(diào)查.數(shù)據(jù)如下表:
認為作業(yè)多認為作業(yè)不多總計
喜歡玩游戲2010
不喜歡玩游戲28
總計
(Ⅰ)請完善上表中所缺的有關(guān)數(shù)據(jù);
(Ⅱ)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“喜歡玩游戲與作業(yè)量的多少有關(guān)系”?
P(x2≥k)0.100    0.050    0.010
k2.706    3.841    6.635
附:χ2=$\frac{{n{{(n}_{11}n}_{22}{{-n}_{12}n}_{21})}^{2}}{{(n}_{11}{+n}_{12}){(n}_{21}{+n}_{22}){(n}_{11}{+n}_{21}){(n}_{12}{+n}_{22})}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.古詩云:遠望巍巍塔七層,紅光點點倍加增.共燈三百八十一,請問尖頭幾盞燈?(  )
A.2B.4C.3D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知正數(shù)a,b滿足a2+b2=1,則ab的最大值為(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若向量$\overrightarrow a=(1,1)$,$\overrightarrow b=(-1,2)$,$\overrightarrow c=(1,-1)$,則$\overrightarrow c$等于(  )
A.$-\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$B.$\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$D.$-\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知$m=a+\frac{1}{a-2}(a>2)$,$n={2^{2-{b^2}}}(b≠0)$,m的最小值為:4,則m,n之間的大小關(guān)系為m>n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=e|x|•sinx的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=lnx+ax(a<0)的單調(diào)增區(qū)間為$(0,-\frac{1}{a}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知等比數(shù)列{an}的前n項和為Sn,a1=$\frac{2}{3}$,且S2+$\frac{1}{2}$a2=1
(1)求數(shù)列{an}的通項公式;
(2)記bn=log3$\frac{{{a}_{n}}^{2}}{4}$,求數(shù)列{$\frac{1}{{b}_{n}•{b}_{n+1}}$}的前n項和Tn

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩成人一区二区 | 亚洲黄色毛片 | 精品成人佐山爱一区二区 | 欧美国产日韩在线观看 | 久久中文字幕电影 | 五月婷婷免费视频 | 精品久久久久久久久久久院品网 | 欧美成视频 | 国产精品乱码一区二区三区 | 色av综合在线 | 国产欧美一区二区精品忘忧草 | 毛片毛片毛片毛片毛片毛片毛片毛片 | 国产一区二区视频精品 | 日韩精品一区二区在线观看 | 国产高清视频在线 | 日韩精品一区二区三区在线 | 中文字幕欧美在线观看 | 天堂a在线| 日韩一区二区在线视频 | 国产精品99一区二区三区 | 国产99久久精品 | 91色爱| 欧美在线视频一区二区 | 黄的视频网站 | 亚洲日韩欧美一区二区在线 | 男女小网站 | 亚洲精品三级 | 一区二区在线免费观看 | 视频精品一区 | 男女羞羞视频网站18 | 国产高清一区 | 色综合五月婷婷 | 成人一区二区三区久久精品嫩草 | 91麻豆精品国产91久久久资源速度 | 国产日韩精品视频 | 国产在线精品一区二区 | 欧美色综合 | 桃色视频国产 | 精品视频一区二区在线观看 | 一区二区在线视频 | a在线播放 |