分析 (1)對函數f(x)=x3-ax2-3x進行求導,轉化成f′(x)在[1,+∞)上恒有f′(x)≥0,求出參數a的取值范圍;
(2)先求導,再根據f′(3)=0,求得a=5,再根據導數求出函數極值,和端點值,求出最值即可.
解答 解:(1)y=3x2-2ax-3,
∵f(x)在[1,+∞)上是增函數,
∴f′(x)在[1,+∞)上恒有f′(x)≥0,
即3x2-2ax-3≥0在[1,+∞)上恒成立.
則必有$\frac{a}{3}$≤1且f′(1)=-2a≥0,
∴a≤0;
實數a的取值范圍是(-∞,0].
(2)∵f(x)=x3-ax2+3x.
∴f′(x)=3x2-2ax+3.
由題意有f′(3)=0,解得a=5,
故f(x)=x3-5x2+3x,
∴f′(x)=3x2-10x+3.
令 f′(x)=0,解得 x=3∈[2,4],x=$\frac{1}{3}$ (舍去),
易知f(x)在區間[2,3]上單調遞減,在[3,4]上單調遞增,
而f(2)=-6,f(4)=-4,f(3)=-9,
故f(x)在區間[2,4]上的最大值為-4,最小值為-9.
點評 本題考查函數與導函數的關系,函數的單調性與導數的關系,通過函數的導數求解函數極值,考查轉化思想與計算能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | t>10 | B. | t<10 | C. | t>30 | D. | t<30 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com