日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
8.己知0<a<3,那么$\frac{1}{a}+\frac{9}{3-a}$的最小值是$\frac{16}{3}$.

分析 0<a<3,3-a>0.可得$\frac{1}{a}+\frac{9}{3-a}$=$\frac{1}{3}(a+3-a)$$(\frac{1}{a}+\frac{9}{3-a})$=$\frac{1}{3}$$(10+\frac{3-a}{a}+\frac{9a}{3-a})$,利用基本不等式的性質即可得出.

解答 解:∵0<a<3,3-a>0.
∴$\frac{1}{a}+\frac{9}{3-a}$=$\frac{1}{3}(a+3-a)$$(\frac{1}{a}+\frac{9}{3-a})$=$\frac{1}{3}$$(10+\frac{3-a}{a}+\frac{9a}{3-a})$≥$\frac{1}{3}(10+2\sqrt{\frac{3-a}{a}•\frac{9a}{3-a}})$=$\frac{16}{3}$.
故答案為:$\frac{16}{3}$.

點評 本題考查了基本不等式的性質,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

8.如圖所示,某工廠要設計一個三角形原料,其中AB=$\sqrt{3}$AC.
(1)若BC=2,求△ABC的面積的最大值;
(2)若△ABC的面積為1,問∠BAC=θ為何值時BC取得最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.在直角坐標系xOy中,直線l的參數方程為$\left\{\begin{array}{l}x=3-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數).在極坐標系(與直角坐標系xOy取相同的長度單位),且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=4sinθ.
(1)求圓C的直角坐標方程和直線l普通方程;
(2)設圓C與直線l交于點A,B,若點P的坐標為(3,0),求|PA|+|PB|.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.若數列{an}滿足${a_1}=\frac{1}{2}$,${a_n}=1-\frac{1}{{{a_{n-1}}}}$(n≥2且a∈N),則a2016等于(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.對于函數y=x+$\frac{a}{x}$(a>0,x>0),其在$(0,\sqrt{a}]$上單調遞減,在$[\sqrt{a},+∞)$上單調遞增,因為它的圖象類似于著名的體育用品公司耐克的商標,我們給予這個函數一個名稱--“耐克函數”,設某“耐克函數”f(x)的解析式為f(x)=$\frac{{{x^2}+x+a}}{x}$(a>0,x>0).
(1)若a=4,求函數f(x)在區間$[\frac{1}{2},3]$上的最大值與最小值;
(2)若該函數在區間[1,2]上是單調函數,試求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(1,-2).
(1)若$\overrightarrow{a}$=m$\overrightarrow{b}$+n$\overrightarrow{c}$,求實數m、n的值;
(2)若($\overrightarrow{a}$+$\overrightarrowp9vv5xb5$)∥($\overrightarrow{b}$+$\overrightarrow{c}$),求|$\overrightarrowp9vv5xb5$|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知定義在(-1,1)上的奇函數f(x),當x∈(0,1)時,f(x)=x2-1,若f(x0)=$\frac{1}{2}$,則x0=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.四邊形ABCD中,∠BAC=90°,BD+CD=2,則它的面積最大值等于$\frac{1+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.設隨機變量X與Y相互獨立,概率密度分別為fX(x)=$\left\{\begin{array}{l}{2{e}^{-2x},x>0}\\{0,x≤0}\end{array}\right.$,fY(y)=$\left\{\begin{array}{l}{3{e}^{-3y},y>0}\\{0,y≤0}\end{array}\right.$,求E(XY)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本欧美在线观看 | 97福利视频 | 91激情视频| 日本视频在线播放 | 欧美一级淫片 | 波多野结衣视频在线播放 | 精品亚洲一区二区 | 九九视频这里只有精品 | 欧美国产精品一区二区 | 三级黄网站 | 中文字幕在线观看日本 | 久久三级视频 | 一级黄色免费 | 91精品久久久久 | 91成人在线 | 成年人的免费视频 | 五月久久| av免费看片| 91在线看片 | 亚洲免费精品视频 | 欧美一级黄 | 91久久国产综合久久91精品网站 | 夜夜骚av| 欧美成人毛片 | 久婷婷 | 日韩精品三级 | 欧美区一区二 | 国产一级18片视频 | 少妇综合 | 久久精品一二三 | 六月丁香激情 | 国产91在线看 | 国产在线成人 | 国产一区二区视频在线播放 | 夜夜操狠狠操 | 欧美在线观看一区二区三区 | 亚洲天堂一区二区三区 | 日本毛片在线观看 | 亚洲 欧美 日韩 在线 | 天天爽夜夜爽夜夜爽精品视频 | 高潮一区二区三区乱码 |