日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
4.在1907年的一項關于16艘輪船的研究中,船的噸位區間從192t~3246t,船員的人數從5人到32人,由船員人數關于噸位的回歸分析得到如下結果:$\widehat{y}$=9.5+0.0062x,假定的兩艘輪船的噸位相差1000t,船員平均人數相差6人,對于最小的船估計的船員人數是11人,對于最大的船估計的船員人數是31人.

分析 根據回歸方程,計算兩艘輪船噸位相差1000噸時船員平均人數的差值,
以及x=192和x=3246t時,對應$\widehat{y}$的值即可.

解答 解:由題意,由于船員人數關于噸位的回歸方程是:
$\widehat{y}$=9.5+0.0062x,
兩艘輪船噸位相差1000噸時,
船員平均人數的差值是0.0062×1000≈6(人);
當x=192t時,由回歸方程計算$\widehat{y}$=9.5+0.0062×192≈11(人);
當x=3246t時,由回歸方程計算$\widehat{y}$=9.5+0.0062×3246≈31(人);
所以,兩艘輪船的噸位相差1000t,船員平均人數相差6人,
對于最小的船估計的船員人數是11人,對于最大的船估計的船員人數是31人.
故答案為:6,11,31.

點評 本題考查了線性回歸方程的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

6.設函數f(x)=ex+sinx(e為自然對數的底數),g(x)=ax,F(x)=f(x)-g(x).
(1)若a=2,且直線x=t(t≥0)分別與函數f(x)和g(x)的圖象交于P,Q,求P,Q兩點間的最短距離;
(2)若x≥0時,函數y=F(x)的圖象恒在y=F(-x)的圖象上方,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知α∈[0,π),在直角坐標系xOy中,直線l1的參數方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數);在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,直線l2的極坐標方程是ρcos(θ-α)=2sin(α+$\frac{π}{6}$).
(Ⅰ)求證:l1⊥l2
(Ⅱ)設點A的極坐標為(2,$\frac{π}{3}$),P為直線l1,l2的交點,求|OP|•|AP|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.某超市計劃銷售某種產品,先試銷該產品n天,對這n天日銷售量進行統計,得到頻率分布直方圖如圖.
(Ⅰ)若已知銷售量低于50的天數為23,求n;
(Ⅱ)廠家對該超市銷售這種產品的日返利方案為:每天固定返利45元,另外每銷售一件產品,返利3元;頻率估計為概率.依此方案,估計日返利額的平均值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知點P在橢圓C1:$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{4}$=1上,點Q在橢圓C2:$\frac{{y}^{2}}{9}$+x2=1上,O為坐標原點,記ω=$\overrightarrow{OP}$•$\overrightarrow{OQ}$,集合{(P,Q)|ω=$\overrightarrow{OP}$•$\overrightarrow{OQ}$},當ω取得最大值時,集合中符合條件的元素有幾個(  )
A.2個B.4個C.8個D.無數個

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.求棱長為a的正四面體的內切球和外接球的體積之比.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知命題p:?x<1,$log{\;}_{\frac{1}{3}}x<0$;命題q:?x0∈R,$x_0^2≥{2^{x_0}}$,則下列命題中為真命題的是(  )
A.p∨qB.(¬p)∧(¬q)C.p∨(¬q)D.p∧q

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.某種產品的廣告費用支出x(萬元)與銷售額y(萬元)之間有如下的對應數據:
x246810
y40507090100
(1)請根據上表提供的數據,用最小二乘法求出y關于x 的線性回歸方程$\stackrel{∧}{y}$=bx+a

p(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(其中:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$ )求回歸直線方程.
(2)據此估計廣告費用為12時,銷售收入y的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知函數f(x)=lnx-mx2+(1-2m)x+1
(I)當m=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(II)若m∈Z,關于x的不等式f(x)≤0恒成立,求m的最小值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 毛片久久久 | 日韩成人国产 | 国产羞羞视频在线观看 | 中文字幕视频在线播放 | 欧美精品一二三 | 日韩电影免费观 | 久久久99精品免费观看 | 国产精品久久久久久久午夜 | 国产精品一区二区三区四区 | 99精品久久久久久蜜桃 | 久久久久久电影 | 99国产精品久久久久久久 | 福利视频一区 | 日韩电影专区 | 久色视频在线 | 男人久久天堂 | 国产精品视频一二 | 国产精品久久 | 中文字幕av一区二区 | 欧美福利一区二区三区 | 在线播放一区二区三区 | 狠狠色丁香婷婷综合 | 91人人| 亚洲成人免费 | 亚洲aⅴ天堂av在线电影软件 | 欧美日一区二区 | 偷拍自拍亚洲 | 欧美三级电影在线 | 亚洲电影一区二区三区 | 精品午夜久久久 | 亚洲欧美中文日韩v在线观看 | 日韩一区二区免费视频 | 99re免费视频精品全部 | 91在线成人 | 日韩欧美手机在线 | 日韩精品 | 一区二区精品视频在线观看 | 精品一区二区三区三区 | 黄av免费| 成人作爱视频 | 国产一区二区三区免费 |