分析 利用已知遞推關(guān)系,作差bn+1-bn,證明為常數(shù)即可.
解答 證明:∵a1=2,an=2-$\frac{1}{{a}_{n-1}}$(n≥2,n∈N*),bn=$\frac{1}{{a}_{n}-1}$(n∈N*),
∴bn+1-bn=$\frac{1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=$\frac{1}{2-\frac{1}{{a}_{n}}-1}$-$\frac{1}{{a}_{n}-1}$=$\frac{{a}_{n}}{{a}_{n}-1}$-$\frac{1}{{a}_{n}-1}$=1,b1=$\frac{1}{{a}_{1}-1}$=1,
∴數(shù)列{bn}是等差數(shù)列,首項為1,公差為1.
點評 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列的定義、作差法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-1<x<3} | B. | {x|x<2,或x>3} | C. | {x|-1<x<1} | D. | {x|x<-1,或x>3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1:1 | B. | 2:1 | C. | 3:1 | D. | 4:1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com