日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
13.在△ABC中,∠BAC=120°,AC=2AB=4,點D在BC上,且AD=BD,則AD=$\frac{\sqrt{7}}{2}$.

分析 由余弦定理求出BC=2$\sqrt{7}$,由正弦定理,求出sinB=$\frac{\sqrt{3}}{\sqrt{7}}$,從而cosB=$\frac{2}{\sqrt{7}}$,設AD=BD=x,由余弦定理得:cosB=$\frac{1}{x}$,由此能求出AD的值.

解答 解:∵在△ABC中,∠BAC=120°,AC=2AB=4,
∴由余弦定理得BC=$\sqrt{16+4-2×2×4×120°}$=2$\sqrt{7}$,
由正弦定理,得:$\frac{BC}{sinA}=\frac{AC}{sinB}$,
∴sinB=$\frac{AC•sinA}{BC}$=$\frac{4•sin120°}{2\sqrt{7}}$=$\frac{\sqrt{3}}{\sqrt{7}}$,
∴cosB=$\sqrt{1-(\frac{\sqrt{3}}{\sqrt{7}})^{2}}$=$\frac{2}{\sqrt{7}}$,
∵AD=BD,∴設AD=BD=x,
由余弦定理得:cosB=$\frac{4+{x}^{2}-{x}^{2}}{2×2×x}$=$\frac{1}{x}$,
∴AD=x=$\frac{1}{cosB}$=$\frac{\sqrt{7}}{2}$.
故答案為:$\frac{{\sqrt{7}}}{2}$.

點評 本題考查三角形邊長的求法,涉及到正弦定理、余弦定理等基礎知識,考查推理論證能力、運算求解能力,考查函數與方思想、數形結合思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

3.已知F是曲線$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=1+cos2θ}\end{array}\right.$(θ∈R)的焦點,A(1,0),則|AF|的值等于$\sqrt{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知函數f(x)是R上的奇函數,且滿足f(π-x)=f(x),當0≤x≤$\frac{π}{2}$時,f(x)=cosx-1,則當0≤x≤π時,f(x)的圖象與x軸所圍成圖形的面積為(  )
A.π-2B.2π-4C.3π-6D.4π-8

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.如圖,在矩形ABCD中,已知AB=2,AD=4,點E、F分別在AD、BC上,且AE=1,BF=3,將四邊形AEFB沿EF折起,使點B在平面CDEF上的射影H在直線DE上.

(I)求證:CD⊥BE;
(II)求點B到平面CDE的距離;
(III)求直線AF與平面EFCD所成的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.在△ABC中,內角A,B,C的對邊分別為a,b,c.已知$\sqrt{3}a=b(sinC+\sqrt{3}cosC)$.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,求a+c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.已知$\overrightarrow a=(1,0){,_{\;}}\overrightarrow b=(2,1)$,則$\overrightarrow a$•$\overrightarrow b$=2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.榫卯(sǔn mǎo)是古代中國建筑、家具及其它器械的主要結構方式,是在兩個構件上采用凹凸部位相結合的一種連接方式,凸出部分叫做“榫頭”.某“榫頭”的三視圖及其部分尺寸如圖所示,則該“榫頭”體積等于(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知平面直角坐標系xOy中,過點P(-1,-2)的直線l的參數方程為$\left\{{\begin{array}{l}{x=-1+tcos{{45}°}}\\{y=-2+tsin{{45}°}}\end{array}}\right.$(t為參數),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ•sinθ•tanθ=4m(m>0),直線l與曲線C相交于不同的兩點M,N.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若|PM|=|MN|,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知向量$\overrightarrow{a}$=(x,y),$\overrightarrow{b}$=(1,-2),從6張大小相同,分別標有號碼1,2,3,4,5,6的卡片中有放回地抽取兩張,x、y分別表示第一次、第二次抽取的卡片上的號碼.
(Ⅰ)求滿足$\overrightarrow{a}$•$\overrightarrow{b}$=-1的概率;
(Ⅱ)求滿足$\overrightarrow{a}$•$\overrightarrow{b}$>0的概率.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: www.久久 | 91高清在线 | 久久久久久99 | 爱啪导航一精品导航站 | 免费观看日韩 | 日韩在线一区二区三区 | 欧美中文字幕在线 | 99精品国产一区二区 | 在线观看免费毛片视频 | 中文无吗 | 日本中文字幕在线看 | 久久福利影院 | 精品伦理一区二区三区 | 人人草人人干 | 日本a在线| mm1313亚洲国产精品美女 | 欧美国产亚洲一区二区 | 在线第一页 | 羞羞视频网站在线看 | 欧美亚洲日本国产 | 欧美一区二区三 | 高潮毛片又色又爽免费 | 亚洲影院成人 | 久久久婷 | 18毛片| 久久午夜精品影院一区 | 欧美日韩国产在线观看 | 日韩在线视频精品 | 一区二区免费视频 | 一级大毛片 | 国产免费国产 | 一区综合| 色婷婷综合久久久久中文一区二区 | 国产在线一区二区三区视频 | 九九热精品免费 | 成人精品一区二区三区中文字幕 | 久久久精品综合 | 亚洲在线免费观看 | 91免费看 | 欧美成人一区二区三区片免费 | 青青草视频网站 |