分析 (Ⅰ)當n≥2時,4Sn-1=(an-1+1)2,4Sn=(an+1)2,n∈N*.兩式相減,得(an+an-1)(an-an-1-2)=0(an-an-1-2)=0,得an-an-1=2即可.
(Ⅱ)由(Ⅰ)知,bn=$\frac{{a}_{n}}{{2}^{n-1}}$=$\frac{2n-1}{{2}^{n-1}}$,利用錯位相減法求Tn即可證明.
解答 解:(Ⅰ)當n=1時,4S1=(a1+1)2,即a1=1.
當n≥2時,4Sn-1=(an-1+1)2,
又4Sn=(an+1)2,n∈N*.
兩式相減,得(an+an-1)(an-an-1-2)=0(an-an-1-2)=0.
因為數列{an}的各項均為正數,所以an-an-1=2.
所以數列{an}是以1為首項,2為公差的等差數列,
即an=2n-1(n∈N*).
(Ⅱ)由(Ⅰ)知,bn=$\frac{{a}_{n}}{{2}^{n-1}}$=$\frac{2n-1}{{2}^{n-1}}$,
則Tn=$\frac{1}{{2}^{0}}+\frac{3}{{2}^{1}}+\frac{5}{{2}^{2}}+…+\frac{2n-1}{{2}^{n-1}}$…①
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{1}}+\frac{3}{{2}^{2}}+…+\frac{2n-3}{{2}^{n-1}}+\frac{2n-1}{{2}^{n}}$…②
①-②,得$\frac{1}{2}{T}_{n}=\frac{1}{{2}^{0}}+2(\frac{1}{{2}^{1}}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}})-\frac{2n-1}{{2}^{n}}$=1+$\frac{1-\frac{1}{{2}^{n-1}}}{1-\frac{1}{2}}$-$\frac{2n-1}{{2}^{n}}$=3-$\frac{2n+3}{{2}^{n}}$
所以Tn=6-$\frac{2n+3}{{2}^{n-1}}$<6.
點評 本題考查了數列的遞推式,等差數列的通項,錯位相減法求和,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | z2<0 | B. | $z+\overline{z}=0$ | ||
C. | Rez=0且 Imz≠0 | D. | z=|z|i或z=-|z|i,且|z|≠0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4033個 | B. | 4032個 | C. | 2017個 | D. | 2016個 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com