日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
2.若關于x的方程4x-(a+3)2x+1=0有實數解,則實數a的取值范圍是[-1,+∞).

分析 分離變量,然后利用基本不等式求解表達式的最值,即可求出a的范圍.

解答 解:關于x的方程4x-(a+3)2x+1=0有實數解,即a+3=2x+$\frac{1}{{2}^{x}}$≥2$\sqrt{{2}^{x}•\frac{1}{{2}^{x}}}$=2,當且僅當x=0時取等號.
∴a≥-1,
所以a的范圍為[-1,+∞)
故答案為:[-1,+∞).

點評 本題考查指數函數的定義、基本不等式求最值問題,同時考查轉化思想,比較基礎.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

12.已知圓P的半徑等于橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1的長軸長,圓心是拋物線y2=4$\sqrt{2}$x的焦點,經過點M(-$\sqrt{2}$,1)的直線1將圓P分成兩段弧,則劣弧長度的最小值為(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知A={x|2x>1},B={x|-1<x<1}.
(1)求A∪B及(∁RA)∩B;
(2)若集合C={x|x<a},滿足B∪C=C,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.已知角α的終邊上一點$P({-\sqrt{3},m})$,且$sinα=\frac{{\sqrt{2}}}{4}m$,則tanα的值為±1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.設x>0,則$x\sqrt{1-4{x^2}}$得最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知函數$f(x)=lg\frac{1-x}{x+1}$
(1)求函數f(x)的定義域.
(2)若函數f(x)<0,求x得取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知函數f(x)=lnx-mx(m∈R),g(x)=2f(x)+x2,h(x)=lnx-cx2-bx.
(1)求函數f(x)的單調區(qū)間;
(2)當$m≥\frac{{3\sqrt{2}}}{2}$時,g(x)的兩個極值點為x1,x2(x1<x2).
①證明:$0<\frac{x_1}{x_2}≤\frac{1}{2}$;
②若x1,x2恰為h(x)的零點,求$y=({x_1}-{x_2})h'(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.如圖所示的程序框圖,輸出的值為(  )
A.$\frac{15}{16}$B.$\frac{15}{12}$C.$\frac{13}{8}$D.$\frac{13}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知函數$f(x)=3cos(ωx+\frac{π}{3})(ω>0)$和g(x)=2sin(2x+φ)+1的圖象的對稱軸完全相同,若$x∈[0,\frac{π}{3}]$,則f(x)的取值范圍是(  )
A.[-3,3]B.$[-\frac{3}{2},3]$C.$[-3,\frac{{3\sqrt{3}}}{2}]$D.$[-3,\frac{3}{2}]$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产亚洲一区二区三区 | 国产精品久久久久久久久久东京 | 欧美涩涩视频 | 在线va| 国产成人一区二区 | 日韩午夜在线 | 国产精品综合一区二区 | 黄色一级免费电影 | 国产精品一区二区三 | 国产成人午夜 | 久久久国产精品 | 国产精品久久精品久久 | 欧美一区不卡 | 精品国产污网站污在线观看15 | 亚洲日本韩国在线观看 | 久久这里只有精品23 | 婷婷精品久久久久久久久久不卡 | 求个黄色网址 | 国产精品二区一区二区aⅴ污介绍 | 一级日韩片 | 中文字幕精品三级久久久 | 久操不卡| 日本一区二区三区视频在线 | 久久99精品久久久久久 | 国产精品无| 久久成人精品一区二区三区 | 日本久草 | 国产精品久久久久久久久久99 | 久久在线播放 | 男女免费在线观看 | 成人精品 | 人人精品 | 在线观看免费视频亚洲 | 成人国产精品免费观看 | 欧美视频在线观看免费 | 欧美性猛交一区二区三区精品 | 日韩欧美一区二区三区久久婷婷 | 欧美日韩在线观看中文字幕 | 黄色毛片av | 夜晚福利| 福利二区 |