分析 由x>0,令y=$x\sqrt{1-4{x^2}}$≥0,可得:y2=x2(1-4x2)=$\frac{1}{4}$×4x2(1-4x2),再利用基本不等式的性質即可得出.
解答 解:由x>0,令y=$x\sqrt{1-4{x^2}}$≥0,
可得:y2=x2(1-4x2)=$\frac{1}{4}$×4x2(1-4x2)≤$\frac{1}{4}$$(\frac{4{x}^{2}+1-4{x}^{2}}{2})^{2}$=$\frac{1}{16}$,∴$y≤\frac{1}{4}$.
當且僅當x=$\frac{\sqrt{2}}{4}$時取等號,
∴$x\sqrt{1-4{x^2}}$的最大值為$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.
點評 本題考查了函數的性質、基本不等式的性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com