分析 (1)利用導數的幾何意義,分別求兩函數在與兩坐標軸的交點處的切線斜率,令其相等解方程即可得a值;
(2)令u=xlnx,再研究二次函數u2+(2t-1)u+t2-t圖象是對稱軸u=$\frac{1-2t}{2}$,開口向上的拋物線,結合其性質求出最值;
(3)先由題意得到F(x)=g(x)+g′(x)=lnx+$\frac{1}{x}$,再利用導數工具研究所以F(x)在區間(1,+∞)上單調遞增,得到當x≥1時,F(x)≥F(1)>0,下面對m進行分類討論:①當m∈(0,1)時,②當m≤0時,③當m≥1時,結合不等式的性質即可求出a的取值范圍.
解答 解:(1)y=f(x)圖象與x軸異于原點的交點M(a,0),f′(x)=2x-a,
y=g(x-1)=ln(x-1)圖象與x軸的交點N(2,0),
g′(x-1)=$\frac{1}{x-1}$由題意可得k l1=k l2,即a=1;
(2)y=f[xg(x)+t]=[xlnx+t]2-(xlnx+t)
=(xlnx)2+(2t-1)(xlnx)+t2-t,
令u=xlnx,在 x∈[1,e]時,u′=lnx+1>0,
∴u=xlnx在[1,e]單調遞增,0≤u≤e,
u2+(2t-1)u+t2-t圖象的對稱軸u=$\frac{1-2t}{2}$,拋物線開口向上,
①當u=$\frac{1-2t}{2}$≤0,即t≥$\frac{1}{2}$時,y最小=t2-t,
②當u=$\frac{1-2t}{2}$≥e,即t≤$\frac{1-2e}{2}$時,y最小=e2+(2t-1)e+t2-t,
③當0<$\frac{1-2t}{2}$<e,即 $\frac{1-2e}{2}$<t<$\frac{1}{2}$時,
y最小=y|u=$\frac{1-2t}{2}$=-$\frac{1}{4}$;
(3)F(x)=g(x)+g′(x)=lnx+$\frac{1}{x}$,
F′(x)=$\frac{x-1}{{x}^{2}}$≥0,
所以F(x)在區間(1,+∞)上單調遞增,
∴當x≥1時,F(x)≥F(1)>0,
①當m∈(0,1)時,有,
α=mx1+(1-m)x2>mx1+(1-m)x1=x1,
α=mx1+(1-m)x2<mx2+(1-m)x2=x2,
得α∈(x1,x2),同理β∈(x1,x2),
∴由f(x)的單調性知 0<F(x1)<F(α)、f(β)<f(x2),
從而有|F(α)-F(β)|<|F(x1)-F(x2)|,符合題設.
②當m≤0時,
α=mx1+(1-m)x2≥mx2+(1-m)x2=x2,
β=mx2+(1-m)x1≤mx1+(1-m)x1=x1,
由f(x)的單調性知,
F(β)≤F(x1)<f(x2)≤F(α),
∴|F(α)-F(β)|≥|F(x1)-F(x2)|,與題設不符,
③當m≥1時,同理可得α≤x1,β≥x2,
得|F(α)-F(β)|≥|F(x1)-F(x2)|,與題設不符,
∴綜合①、②、③得 m∈(0,1).
點評 本小題主要考查函數單調性的應用、利用導數研究曲線上某點切線方程、利用導數研究函數的單調性等基礎知識,考查運算求解能力、化歸與轉化思想.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $-\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $-\frac{3}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{7}{10}$ | D. | $\frac{9}{10}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{15}}}{5}$ | D. | $\frac{{\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {-2,-1,0,1} | B. | {-2,-1,1,2} | C. | {-2,-1,1} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{4\sqrt{5}}{5}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com