A. | 1 | B. | $\frac{5}{2}$ | C. | $\frac{7}{4}$ | D. | $\frac{9}{4}$ |
分析 由已知數列遞推式構造等比數列{an-2},再由等比數列的通項公式求得an,則a4可求.
解答 解:由an+2an+1=6,得an+1=-$\frac{1}{2}$an+3,
即${a}_{n+1}-2=-\frac{1}{2}({a}_{n}-2)$,
又a1-2=4-2=2≠0,
∴數列{an-2}是以2為首項,以$-\frac{1}{2}$為公比的等比數列,
則${a}_{n}-2=2×(-\frac{1}{2})^{n-1}$,∴${a}_{n}=2+2×(-\frac{1}{2})^{n-1}$,
則${a}_{4}=2+2×(-\frac{1}{2})^{3}=\frac{7}{4}$.
故選:C.
點評 本題考查數列遞推式,考查了等比關系的確定,是中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 第四象限 | B. | 第三象限 | C. | 第二象限 | D. | 第一象限 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{{2\sqrt{3}}}{5}$ | B. | $\frac{{2\sqrt{3}}}{5}$ | C. | $\frac{{4\sqrt{3}-3}}{10}$ | D. | $\frac{{4\sqrt{3}+3}}{10}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com