日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
17.已知橢圓的左、右焦點分別為F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),且過點(1,-$\frac{\sqrt{3}}{2}$).
(1)、求橢圓的方程;
(2)、過橢圓的右焦點作斜率為$\sqrt{3}$直線l交橢圓于M,N兩點,求弦MN的長.

分析 (1)由題意可知:橢圓的焦點在x軸上,設橢圓的方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,(a>b>0),由兩點之間的距離公式可知:2a=4,即a=2,c=$\sqrt{3}$,則b2=a2-c2=4-3=1即可求得橢圓的標準方程;
(2)直線l過橢圓的右焦點$({\sqrt{3},0})$,且斜率為$\sqrt{3}$,設l的方程為:$y=\sqrt{3}x-3$,代入橢圓方程,由韋達定理${x_1}+{x_2}=\frac{24}{13}\sqrt{3},{x_1}{x_2}=\frac{32}{13}$,由弦長公式可知:$|{MN}|=\sqrt{1+3}\sqrt{{{({\frac{24}{13}\sqrt{3}})}^2}-4×\frac{32}{13}}=\frac{16}{13}$,即可求得弦MN的長.

解答 解:(1)已知橢圓的左、右焦點分別為${F_1}({-\sqrt{3},0}),{F_2}({\sqrt{3},0})$,
可知橢圓的焦點在x軸上,設橢圓的方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
橢圓經過點$({1,-\frac{{\sqrt{3}}}{2}})$,
則由橢圓的定義可知:$2a=\sqrt{{{({1+\sqrt{3}})}^2}+{{({-\frac{{\sqrt{3}}}{2}})}^2}}+\sqrt{{{({1-\sqrt{3}})}^2}+{{({-\frac{{\sqrt{3}}}{2}})}^2}}=\sqrt{\frac{19}{4}+2\sqrt{3}}+\sqrt{\frac{19}{4}-2\sqrt{3}}$=$\sqrt{\frac{19}{2}+2\sqrt{{{({\frac{19}{4}})}^2}-{{({2\sqrt{3}})}^2}}}=4$,
∴a2=4,c2=3,
由b2=a2-c2=4-3=1,
則b2=1…(4分)
∴橢圓的方程為:$\frac{x^2}{4}+{y^2}=1$;…(5分)
(2)直線l過橢圓的右焦點$({\sqrt{3},0})$,且斜率為$\sqrt{3}$,
設l的方程為:$y=\sqrt{3}x-3$,
由$\left\{\begin{array}{l}y=\sqrt{3}x-3\\{x^2}+4{y^2}=4\end{array}\right.$,得$13{x^2}-24\sqrt{3}x+32=0$,…(7分)
已知直線和橢圓交于M,N兩點,設M(x1,y1),N(x2,y2),
則由韋達定理可知:${x_1}+{x_2}=\frac{24}{13}\sqrt{3},{x_1}{x_2}=\frac{32}{13}$,…(9分)
∴由弦長公式可知:$|{MN}|=\sqrt{1+3}\sqrt{{{({\frac{24}{13}\sqrt{3}})}^2}-4×\frac{32}{13}}=\frac{16}{13}$,…(11分)
∴弦MN的長為$\frac{16}{13}$.…(12分)

點評 本題考查橢圓的定義及標準方程,直線與橢圓的位置關系,考查韋達定理,弦長公式的應用,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

7.(1)計算:$2{log_3}2-{log_3}\frac{32}{9}+{log_3}8$;
(2)化簡:$\frac{{5x{y^4}}}{{(4{x^5}y)•(-6{x^{-2}}{y^2})}}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.不等式組$\left\{\begin{array}{l}{0≤2x+y≤6}\\{0≤x-y≤3}\end{array}\right.$表示的平面區域的面積為6.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知$\overrightarrow a=(-2,4),\overrightarrow b=(x,-2),且\overrightarrow a∥\overrightarrow b,則x的值為$(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.設F1、F2是橢圓$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{2}$=1的兩個焦點,點P在橢圓上,當△F1PF2的面積為2時,$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=(  )
A.-$\frac{2\sqrt{6}}{3}$B.0C.1D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.在△ABC中,已知AB=AC=5,BC=6,則$\overrightarrow{AB}•\overrightarrow{AC}$=(  )
A.18B.12C.7D.24

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知數列{an}是一個等差數列,且a2=1,a5=-5.
(1)求{an}的通項an
(2)求{an}前n項和Sn的最大值;
(3)設bn=$\frac{1}{(4-{a}_{n})(4-{a}_{n+1})}$,數列{bn}的前n項的和記為Tn,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.若實數x、y滿足x2+2xy+y2+4x2y2=4,則x-y的最大值是$\frac{\sqrt{17}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.某車間為了規定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數據如下:
零件的個數x(個)2345
加工的時間y(小時)2.5344.5
已知y關于x的回歸方程y=bx+1.05,則b=0.7.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产欧美精品一区二区 | 久草一级片 | 国产成人片 | 国产精品美女久久久久人 | 午夜黄色影院 | 日韩美女国产精品 | 久久国产综合 | 日本久久伊人 | 国产精品国产 | 久久久久中精品中文字幕19 | 伊人精品视频在线观看 | 亚洲日本欧美日韩高观看 | 日韩欧美视频在线 | 国产一区二区三区在线免费观看 | 国产成人在线免费观看视频 | 久久久久国产一区二区三区小说 | 欧美日韩久久久 | 国产乱码精品一区二区三区中文 | 91精品久久久久久久久中文字幕 | 亚洲 精品 综合 精品 自拍 | 日本在线免费 | 国产超碰人人模人人爽人人添 | 久久久免费精品 | av一二三四| 91久久久精品视频 | 中文字幕在线看第二 | 国产精品国产三级国产专业不 | 中文无码久久精品 | 成人网址在线观看 | 久草视| 成年人在线视频播放 | 色吊丝2288sds中文字幕 | 国产黄色大片免费看 | 久久亚洲精品中文字幕 | 精品自拍视频 | 亚洲久草| 久久精品天堂 | 秋霞成人 | 97在线观看视频 | 中文字幕观看 | 久久99精品久久久久久久久久久久 |