日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
4.已知橢圓的方程為$\frac{{x}^{2}}{9}$+y2=1,過左焦點作傾斜角為$\frac{π}{6}$的直線交橢圓于A,B兩點.
(1)求弦AB的長.
(2)求左焦點F1到AB中點M的長.

分析 (1)左焦點F(-2$\sqrt{2}$,0),直線AB方程為y=$\frac{\sqrt{3}}{3}$(x+2$\sqrt{2}$),設A(x1,y1),B(x2,y2).與橢圓方程聯立化為4x2+12$\sqrt{2}$x+15=0,再利用弦長公式即可得出,
(2)設AB中點M的坐標為(x0,y0),由(1)可知,x0=$\frac{1}{2}$(x1+x2)=-$\frac{3\sqrt{2}}{2}$,y0=$\frac{\sqrt{6}}{6}$,再根據兩點之間的距離公式即可求出.

解答 解:(1)左焦點F(-2$\sqrt{2}$,0),
直線AB方程為:y=$\frac{\sqrt{3}}{3}$(x+2$\sqrt{2}$)
設A(x1,y1),B(x2,y2).
聯立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}(x+2\sqrt{2})}\\{\frac{{x}^{2}}{9}+{y}^{2}=1}\end{array}\right.$,化為4x2+12$\sqrt{2}$x+15=0,
∴x1+x2=-3$\sqrt{2}$,x1x2=$\frac{15}{4}$,
∴|x1-x2|2=(x1+x22-4x1x2=18-15=3,
∴|x1-x2|=$\sqrt{3}$
∴|AB|=$\sqrt{1+{k}^{2}}$•|x1-x2|=$\sqrt{\frac{4}{3}×3}$=2;
(2)設AB中點M的坐標為(x0,y0
由(1)可知,x0=$\frac{1}{2}$(x1+x2)=-$\frac{3\sqrt{2}}{2}$,
y0=$\frac{\sqrt{3}}{3}$(x0+2$\sqrt{2}$)=$\frac{\sqrt{6}}{6}$,
∴|F1M|=$\sqrt{(-2\sqrt{2}+\frac{3\sqrt{2}}{2})^{2}+(\frac{\sqrt{6}}{6})^{2}}$=$\frac{\sqrt{6}}{3}$.

點評 本題考查了橢圓的標準方程、直線與橢圓相交弦長問題,兩點之間的距離公式,推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

1.函數y=loga(x+3)-1(a>0且a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m>0,n>0,則$\frac{1}{m}+\frac{1}{n}$的最小值為(  )
A.$3+2\sqrt{2}$B.$4\sqrt{2}$C.4+2$\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,設F1、F2分別為橢圓的左、右焦點,橢圓上任意一個動點M到左焦點F1的距離的最大值 為$\sqrt{2}$+1
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線L的斜率為k,且過左焦點F1,與橢圓C相交于P、Q兩點,若△PQF2的面積為$\frac{\sqrt{10}}{3}$,試求k的值及直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$,動直線l與橢圓交于B,C兩點(B在第一象限).
(1)若點B的坐標為(1,$\frac{3}{2}$),求△OBC面積的最大值;
(2)設B(x1,y1),C(x2,y2),且3y1+y2=0,求當△OBC面積最大時,直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.函數f(x)=$\left\{\begin{array}{l}{{x}^{3}+1,x<0}\\{(\frac{1}{3})^{x},x≥0}\end{array}\right.$的圖象大致為 (  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知函數y=f(x2-2x)在區間(-∞,-1]上單調遞增,在區間[1,3]上是減函數,則y=f(x)(  )
A.在區間(-∞,3]上遞增B.在區間(-∞,-1]上遞增
C.在區間(-∞,3]上遞減D.在區間(-∞,-1]上遞減

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.求25除4•6n+5(n+1)的余數(n∈N).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知函數f(x)=$\left\{\begin{array}{l}ax+b,x<0\\{2^x},x≥0\end{array}\right.$,且f(-2)=3,f(-1)=f(1).
(Ⅰ)求f(x)的解析式,并求f(f(-2))的值;
(Ⅱ)請在給定的直角坐標系內,利用“描點法”畫出y=f(x)的大致圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.不等式22x-1<2的解集是(  )
A.{x|x<0}B.{x|x>1}C.{x|x<2}D.{x|x<1}

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品久久久久久久久久 | 午夜视频在线免费观看 | 久久久久一区二区 | 一区二区三区四区视频 | 国产福利视频在线 | 日韩毛片视频 | 毛片在线免费 | 欧美日韩亚洲一区 | 国产精品久久久久久99 | 日韩欧美不卡 | 久久激情综合 | 中国a一片一级一片 | 色婷av | 欧美日韩国产二区 | 欧美黄色一级视频 | 午夜在线视频观看 | 天天射影院 | 免费黄色片网站 | 国内福利视频 | 中文在线字幕免费观 | 国产日韩一区二区三区 | 午夜视频免费 | 日韩精品在线播放 | 麻豆影音 | 午夜免费剧场 | 中文字幕日韩一区 | 亚洲激情中文字幕 | 欧美在线观看视频 | 国产免费久久 | 一级特黄视频 | 亚洲福利精品 | 夜夜操夜夜爽 | 波多野结衣之双调教hd | 中文字幕免费看 | 不卡免费视频 | 在线看片a | av观看免费| 日韩1级片 | 91靠逼视频 | 三级av网站 | 成人免费毛片网站 |