分析 由題意展開等式左邊的數量積,化為關于k的一元二次方程求解.
解答 解:由題意可得$|\overrightarrow{a}|=|\overrightarrow{b}|=1$,且<$\overrightarrow{a},\overrightarrow{b}$>=0,
∴$\overrightarrow a•\overrightarrow b=\frac{{1+4{k^2}}}{4k}$=$|\overrightarrow{a}||\overrightarrow{b}|cos0=1×1×1=1$,
∴4k2-4k+1=0,即(2k-1)2=0,得k=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點評 本題考查平面向量的數量積運算,熟記數量積公式是關鍵,是基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,+∞) | B. | [1,+∞) | C. | (0,1] | D. | (0,1) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 28 | B. | 27 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com