日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
16.(1)已知a,b,c∈R,且2a+2b+c=8,求(a-1)2+(b+2)2+(c-3)2的最小值.
(2)請用數學歸納法證明:(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{n+1}{2n}$(n≥2,n∈N*).

分析 (1)使用柯西不等式證明;
(2)先驗證n=2成立,假設n=k成立,推導n=k+1成立即可.

解答 解:(1)由柯西不等式得:
(4+4+1)×[(a-1)2+(b+2)2+(c-3)2]≥[2(a-1)+2(b+2)+c-3]2,
∴9[(a-1)2+(b+2)2+(c-3)2]≥(2a+2b+c-1)2
∵2a+2b+c=8,∴(a-1)2+(b+2)2+(c-3)2≥$\frac{49}{9}$,
∴(a-1)2+(b+2)2+(c-3)2的最小值是$\frac{49}{9}$.
(2)證明:①當n=2時,左邊=1-$\frac{1}{4}$=$\frac{3}{4}$,右邊=$\frac{2+1}{2×2}$=$\frac{3}{4}$,所以等式成立.
②假設當n=k(k≥2,k∈N+)時,等式成立,
即  (1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{k}^{2}}$)=$\frac{k+1}{2k}$(k≥2,k∈N+).
當n=k+1時,(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{k}^{2}}$)(1-$\frac{1}{(k+1)^{2}}$)
=$\frac{k+1}{2k}$•$\frac{{k}^{2}+2k}{(k+1)^{2}}$=$\frac{k+2}{2(k+1)}$=$\frac{(k+1)+1}{2(k+1)}$,
∴當n=k+1時,等式成立.
∴對n≥2,n∈N+時,等式成立.

點評 本題考查了柯西不等式的應用,屬于歸納法證明,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

6.若ABCD為平行四邊形ABCD,E是CD中點,且$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b$,則$\overrightarrow{AE}$=(  )
A.$\frac{1}{2}\overrightarrow a+\overrightarrow b$B.-$\frac{1}{2}\overrightarrow a+\overrightarrow b$C.$\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知 (a+b+c)(a+b-c)=3ab
(1)求角C;
(2)若邊c=2,S△ABC=$\frac{{\sqrt{3}}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.橢圓$\frac{x^2}{12}+\frac{y^2}{3}=1$的左、右焦點分別為F1、F2,點P在橢圓上,且點P的橫坐標為3,則|PF1|是|PF2|的(  )
A.7倍B.5倍C.4倍D.3倍

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.某個自然數有關的命題,如果當n=k+1(n∈N*)時,該命題不成立,那么可推得n=k時,該命題不成立.現已知當n=2016時,該命題成立,那么,可推得( 。
A.n=2015時,該命題成立B.n=2017時,該命題成立
C.n=2015時,該命題不成立D.n=2017時,該命題不成立

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.奇臺一中高一年級數學老師這學期分別用A、B兩種不同的教學方式試驗甲、乙兩個班(人數均為60人,入學時數學平均分數和優秀率都相同,勤奮程度和自覺性都一樣).現隨機收取甲、乙兩班各20名學生的數學期末考試成績,得到莖葉圖:

學校規定:成績不低于85分的為優秀.
請填寫下面的2×2列聯表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認為成績優秀與教學方式有關?”
甲班乙班合計
優秀
不優秀
合計
下面臨界值表僅供參考:

P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.點A(x,y)是675°角終邊上異于原點的一點,則$\frac{y}{x}$的值為( 。
A.1B.-1C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.若|$\overrightarrow{a}$$+\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2|$\overrightarrow{a}$|,則向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.執行如圖所示程序框圖,如果輸出S=1+$\frac{1}{2×1}$+$\frac{1}{3×2×1}$+…+$\frac{1}{10×9×8×…×1}$,那么輸入N(  )
A.9B.10C.11D.12

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 琪琪午夜伦伦电影福利片 | 美女午夜视频 | 久久国产精品久久久久久电车 | 欧美三级 | 欧美偷拍自拍 | 欧美日韩精品一区 | 日本不卡免费新一二三区 | 在线播放ヘンリー冢本原作 | 日韩精品久 | 精品国产一区二区三区小蝌蚪 | 亚洲乱码国产乱码精品精 | 亚洲毛片 | 精品一区二区久久 | 久久www免费视频 | 精品国产乱码久久久久久1区2区 | 久久久蜜桃 | 99久久久99久久国产片鸭王 | 久久99精品久久久久久久青青日本 | 日韩电影免费在线观看中文字幕 | 成人午夜免费视频 | 久久激 | 亚洲成人一区在线观看 | 丁香五月网久久综合 | 国产成人精品一区二 | 国产无套精品久久久久久 | 91精品国产91久久久久久久久久久久 | 国产精品无码久久久久 | 99久久婷婷国产综合精品电影 | 日本高清网站 | 欧美日韩一区二区视频在线观看 | 国产一区二区三区久久久 | 国产精品成人在线 | 亚洲日韩中文字幕一区 | 一二三区字幕免费观看av | 中文字幕一区二区三区乱码图片 | 求av网站 | 中文字幕视频在线 | 日韩电影免费在线 | 国产高清精品一区 | 波多野结衣 一区二区三区 国产在线中文字幕 | 日韩天堂|