日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

4.(文科)設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}x,x<1\\{x^3}-\frac{1}{x}+1,x≥1\end{array}\right.$,則$f(\frac{1}{f(2)})$=$\frac{2}{17}$.

分析 利用分段函數(shù)的表達(dá)式,逐步求解函數(shù)值即可.

解答 解:設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}x,x<1\\{x^3}-\frac{1}{x}+1,x≥1\end{array}\right.$,
則f(2)=8-$\frac{1}{2}+1$=$\frac{17}{2}$.
$f(\frac{1}{f(2)})$=f($\frac{2}{17}$)=$\frac{2}{17}$.
故答案為:$\frac{2}{17}$.

點(diǎn)評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,若直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y={y}_{0}+tsinα}\end{array}\right.$(t為參數(shù),α為l的傾斜角),曲線E的極坐標(biāo)方程為ρ=4sinθ.射線θ=β,θ=β+$\frac{π}{4}$,θ=β-$\frac{π}{4}$與曲線E分別交于不同于極點(diǎn)的三點(diǎn)A、B、C.
(1)求證:|OB|+|OC|=$\sqrt{2}$|OA|;
(2)當(dāng)β=$\frac{7π}{12}$時,直線l過B、C兩點(diǎn),求y0與α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x與燒開一壺水所用時間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).
$\bar x$$\bar y$$\bar w$$\sum_{i=1}^{10}{({x_i}-\bar x)^2}$$\sum_{i=1}^{10}{({w_i}-\bar w)^2}$$\sum_{i=1}^{10}({x_i}-\bar x)({y_i}-\bar y)$$\sum_{i=1}^{10}({w_i}-\bar w)({y_i}-\bar y)$
1.4720.60.782.350.81-19.316.2
表中${w_i}=\frac{1}{x_i^2},\overline{w}=\frac{1}{10}\sum_{i=1}^{10}{w_i}$.
(1)根據(jù)散點(diǎn)圖判斷,y=a+bx與$y=c+\fracp9vv5xb5{x^2}$哪一個更適宜作燒水時間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)x與單位時間內(nèi)煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為$\hat β=\frac{{\sum_{i=1}^n{({v_i}-\bar v)({u_i}-\bar u)}}}{{\sum_{i=1}^n{{{({u_i}-\bar u)}^2}}}},\hat α=\bar v-\hat β\bar u$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且$\overrightarrow{m}$=($\sqrt{3}$,2sinA),$\overrightarrow{n}$=(c,a)若$\overrightarrow{m}∥\overrightarrow{n}$
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中將底面為直角三角形,且側(cè)棱與底面垂直的棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵ABM-DCP與芻童的組合體中AB=AD,A1B1=A1D1.棱臺體積公式:V=$\frac{1}{3}$(S′+$\sqrt{S′S}$+S)h,其中S′,S分別為棱臺上、下底面面積,h為棱臺高.
(Ⅰ)證明:直線BD⊥平面MAC;
(Ⅱ)若AB=1,A1D1=2,MA=$\sqrt{3}$,三棱錐A-A1B1D1的體積V=$\frac{2\sqrt{3}}{3}$,求該組合體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)f(x)=xln x-ax2+(2a-1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若復(fù)數(shù)$\frac{2+ai}{1-i}({a∈R})$是純虛數(shù)(i是虛數(shù)單位),則復(fù)數(shù)z=a+(a-3)i在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a,b∈R,若a>b,則(  )
A.$\frac{1}{a}<\frac{1}{b}$B.ac2>bc2C.2-a<2-bD.lga>lgb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若{an}是等差數(shù)列,且a1=-1,公差為-3,則a8等于(  )
A.-7B.-8C.-22D.27

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 日本精品免费 | 玖草资源 | 国产69精品99久久久久久宅男 | 国产精品视频专区 | 狠狠躁日日躁夜夜躁影院 | 黄色大片在线播放 | 色综合久久久久 | 久久国产精品久久久久久 | 国产成人精品一区二区三区四区 | 欧美成人性生活视频 | 天天干天天插 | 精品国产91久久 | 精品久久久影院 | 中文字幕不卡av | 黄色拍拍视频 | 日韩一区二区在线观看视频 | 91精品一区二区三区久久久久久 | 日本成人三级 | 中文字幕免费在线观看视频 | 欧美一区三区三区高中清蜜桃 | 97狠狠| 久久成人18免费网站 | 中文字幕久久精品 | 国产在线国偷精品产拍 | 日韩午夜精品视频 | 激情三区| 日韩成人免费视频 | 亚洲国产精品久久久久久 | 国产情侣免费视频 | 在线视频亚洲 | 久久网日本 | 成人网在线视频 | 国产小视频在线播放 | av大片在线观看 | youjizz欧美| 欧美日本免费一区二区三区 | 亚洲国产成人精品久久 | 国产suv精品一区二区6 | 网址你懂的| 成人精品一区 | 一级毛片aaaaaa免费看 |