日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
1.已知二次函數f(x)=ax2+2x+c的對稱軸為x=1,g(x)=x+$\frac{1}{x}$(x>0).
(1)求函數g(x)的最小值及取得最小值時x的值;
(2)試確定c的取值范圍,使g(x)-f(x)=0至少有一個實根;
(3)若F(x)=-f(x)+4x+c,存在實數t,對任意x∈[1,m],使F(x+t)≤3x恒成立,求實數m的取值范圍.

分析 (1)根據基本不等式即可求出函數的最值;
(2)根據對稱軸求出a=-1,分別求出f(x)max=1+c,g(x)min=2,即1+c≥2,解得即;
(3)把f(x+t)≤3x轉化為(x+t)2+2(x+t)≤3x,即h(x)=x2+(2t-1)x+t2+2t,在x∈[1,m]恒小于0問題,考查h(x)的圖象與性質,求出m的取值范圍.

解答 解:(1)∵x>0,∴$\frac{1}{x}>0$,
∴$x+\frac{1}{x}≥2$,當且僅當$x=\frac{1}{x}$,即x=1時“=”成立,即g(x)min=2,此時x=1.
(2)f(x)的對稱軸為x=1,
∴a=-1,
∴f(x)=-x2+2x+c,g(x)-f(x)=0至少有一個實根,
∴g(x)=f(x)至少有一個實根,
即g(x)與f(x)的圖象在(0,+∞)上至少有一個交點,f(x)=-(x-1)2+1+c,
∴f(x)max=1+c,g(x)min=2,
∴1+c≥2,∴c≥1,
∴c的取值范圍為[1,+∞).
(3)F(x)=x2-2x-c+4x+c=x2+2x,
∴F(x+t)=(x+t)2+2(x+t),
由已知存在實數t,對任意x∈[1,m],使(x+t)2+2(x+t)≤3x恒成立.
∴x2+(2t-1)x+t2+2t≤0.
令h(x)=x2+(2t-1)x+t2+2t,
∴$\left\{\begin{array}{l}h(1)≤0\\ h(m)≤0\end{array}\right.$,即$\left\{\begin{array}{l}{t^2}+4t≤0\\{t^2}+(2m+2)t+{m^2}-m≤0\end{array}\right.$,
轉化為存在t∈[-4,0],使t2+(2m+2)t+m2-m≤0成立.
令G(t)=t2+(2m+2)t+m2-m,
∴G(t)的對稱軸為t=-(m+1),
∵m>1,
∴-(m+1)<-2.
①當-4<-(m+1)<-2,即1<m<3時,
$G{(t)_{min}}=G(-m-1)={(-m-1)^2}+(2m+2)(-m-1)+{m^2}-m=-3m-1$,
∴$\left\{\begin{array}{l}1<m<3\\-3m-1≤0\end{array}\right.$,
∴1<m<3.
②當-(m+1)≤-4,即m≥3時,
$G{(t)_{min}}=G(-4)=16-8m-8+{m^2}-m={m^2}-9m+8$,
∴$\left\{\begin{array}{l}m≥3\\{m^2}-9m+8≤0\end{array}\right.$,
∴$\left\{\begin{array}{l}m≥3\\ 1≤m≤8\end{array}\right.$,
∴3≤m≤8.
綜上,實數m的取值范圍為(1,8].

點評 本題考查了二次函數在閉區間上的最值問題的應用,解題時應討論對稱軸在區間內還是在區間左側,還是區間右側,從而確定函數的最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

11.已知x,y滿足$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,z=2x-y
(1)畫出以上二元一次不等式組表示的平面區域;
(2)求z的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知指數函數y=g(x)滿足:g(3)=27,定義域為R的函數f(x)=$\frac{n-g(x)}{m+3g(x)}$是奇函數.
(Ⅰ)確定y=g(x),y=f(x)的解析式;
(Ⅱ)若h(x)=kx-g(x)在(0,1)上有零點,求k的取值范圍;
(Ⅲ)若對任意的t∈(1,4),不等式f(2t-3)+f(t-k)>0恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.如果函數f(x)=x2-ax+1僅有一個零點,則實數a的值是±2,若在(0,1)上只有一個零點,則a的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知數列{an}的前項n和Sn=n2+2n,則數列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前項n和為(  )
A.$\frac{n}{3(2n+3)}$B.$\frac{2n}{3(2n+3)}$C.$\frac{n-1}{3(2n+1)}$D.$\frac{n}{2n+1}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.某人要利用無人機測量河流的寬度,如圖,從無人機A處測得正前方河流的兩岸B,C的俯角分別為75°,30°,此時無人機的高是60米,則河流的寬度BC等于(  )
A.$240\sqrt{3}$米B.$180(\sqrt{2}-1)$米C.$120(\sqrt{3}-1)$米D.$30(\sqrt{3}+1)$米

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.不等式y•(x+y-2)≥0在平面直角坐標系中表示的區域(用陰影部分表示)是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.已知冪函數f(x)=xa的圖象經過點(2,16),則實數a的值是4.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知函數f(x)=ex(x2+ax-2)在區間(-2,-1)內單調遞減,則實數a的取值范圍(-2,+∞).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲精品欧美 | 亚洲精品免费在线观看 | 成人午夜激情 | 国产欧美一区二区三区在线看 | 久久免费精品视频 | 激情婷婷| 亚洲在线免费观看 | 99re6热在线精品视频播放 | 亚洲视频一区二区三区 | 国产精品一区二区精品 | 欧美日韩高清在线观看 | 亚欧毛片| 午夜看片 | 麻豆毛片 | 中文字幕av一区二区三区 | 日韩免费 | av日韩在线播放 | 国产精品久久国产精品 | 国产欧美日韩综合精品一 | 91社区在线高清 | 国产精品美女久久 | www.一区二区 | www国产亚洲 | 日韩精品2区 | 成人激情视频免费观看 | 极品少妇一区二区三区精品视频 | 欧美wwwsss9999 | 亚洲精品乱码久久久久久 | 秋霞成人 | 91网站在线看 | 午夜精品一区二区三区在线 | 欧美日日操 | 欧美精品一区二区三区在线播放 | y111111国产精品久久婷婷 | 成人免费福利视频 | 操人网址 | 国产精品毛片一区二区在线看 | 色婷婷综合五月天 | 红色av社区| www.狠狠干| 久久精品视频免费 |