分析 (I)根據基本不等式即可得出結論;
(II)使用分析法,結合(I)的結論即可得出證明.
解答 證明:(Ⅰ)∵a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,
∴2(a2+b2+c2)≥2ab+2bc+2ca,
∴a2+b2+c2≥ab+bc+ca=1,
∴a2+b2+c2≥1.
(Ⅱ)要證$a+b+c≥\sqrt{3}$,
需證${(a+b+c)^2}≥{(\sqrt{3})^2}$,
即證a2+b2+c2+2ab+2bc+2ca≥3,
需證a2+b2+c2≥1,
∵由(Ⅰ)知a2+b2+c2≥1成立,
∴$a+b+c≥\sqrt{3}$.
點評 本題考查了不等式的證明,基本不等式的應用,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com