【題目】已知橢圓E:,過右焦點F的直線l與橢圓E交于A,B兩點(A,B兩點不在x軸上),橢圓E在A,B兩點處的切線交于P,點P在定直線
上.
(1)記點,求過點
與橢圓E相切的直線方程;
(2)以為直徑的圓過點F,求
面積的最小值.
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點,直線
,過動點
作
于點
,
的平分線交
軸于點
,且
,記動點
的軌跡為曲線
.
(1)求曲線的方程;
(2)過點作兩條直線,分別交曲線
于
兩點(異于
點).當直線
的斜率之和為2時,直線
是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若關于x的不等式e2x﹣alnxa恒成立,則實數a的取值范圍是( )
A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+1|﹣|2x﹣2|的最大值為M,正實數a,b滿足a+b=M.
(1)求2a2+b2的最小值;
(2)求證:aabb≥ab.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E:,過右焦點F的直線l與橢圓E交于A,B兩點(A,B兩點不在x軸上),橢圓E在A,B兩點處的切線交于P,點P在定直線
上.
(1)記點,求過點
與橢圓E相切的直線方程;
(2)以為直徑的圓過點F,求
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線:
(α為參數)經過伸縮變換
得到曲線
,在以坐標原點為極點,x軸的正半軸為極軸的極坐標系中,直線l的極坐標方程為
.
(1)求曲線的普通方程;
(2)設點P是曲線上的動點,求點P到直線l距離d的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在極坐標系中,
,
,弧
,
,
所在圓的圓心分別為
,
,
,曲線
是弧
,曲線
是弧
,曲線
是弧
.
(1)寫出曲線,
,
的極坐標方程;
(2)曲線由
,
,
構成,若曲線
的極坐標方程為
(
,
,
,
),寫出曲線
與曲線
的所有公共點(除極點外)的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】全民健身旨在全面提高國民體質和健康水平,倡導全民做到每天參加一次以上的健身活動,學會兩種以上健身方法,每年進行一次體質測定.為響應全民健身號召,某單位在職工體測后就某項健康指數(百分制)隨機抽取了30名職工的體測數據作為樣本進行調查,具體數據如莖葉圖所示,其中有1名女職工的健康指數的數據模糊不清(用x表示),已知這30名職工的健康指數的平均數為76.2.
(1)根據莖葉圖,求樣本中男職工健康指數的眾數和中位數;
(2)根據莖葉圖,按男女用分層抽樣從這30名職工中隨機抽取5人,再從抽取的5人中隨機抽取2人,求抽取的2人都是男職工的概率;
(3)經計算,樣本中男職工健康指數的平均數為81,女職工現有數據(即剔除x)健康指數的平均數為69,方差為190,求樣本中所有女職工的健康指數的平均數和方差(結果精確到0.1).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com