分析 利用不等式表示的平面區域得出區域與圓形區域的關系,把握好兩個集合的包含關系是解決本題的關鍵,通過圖形找準字母之間的不等關系是解決本題的突破口.
解答 解:由題意知,可行域應在圓內,
x=4代入(x-2)2+(y-2)2=8,可得y=0或4,
(4,4)代入mx-y=0,可得m=1,
∵{$\left\{{({x,y})|\left\{{\begin{array}{l}{x-4≤0}\\{y≥0}\\{mx-y≥0({m>0})}\end{array}}\right.}\right\}⊆\left\{{({x,y})|{{({x-2})}^2}+{{({y-2})}^2}≤8}\right\}$,
∴0<m≤1,
故答案為:(0,1].
點評 本題考查線性規劃問題的理解和掌握程度,關鍵要將集合的包含關系轉化為字母之間的關系,通過求解不等式確定出字母的取值范圍,考查轉化與化歸能力.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1.75 | B. | 1.625 | C. | 1.375 | D. | 1.25 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com