日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
8.設f(x)是定義在[-1,1]上的奇函數,f(1)=1,且對任意的a、b∈[-1,1],當a+b≠0時,都有$\frac{f(a)+f(b)}{a+b}$>0
(1)若a,b∈[-1,1]且a-b≠0,求證:$\frac{f(a)-f(b)}{a-b}$>0,并據此說明函數f(x)的單調性;
(2)解不等式f(x-$\frac{1}{2}$)<f($\frac{1}{4}$-x);
(3)若對于任意x∈[-1,1],m2+2mx-2≤f(x)恒成立,求負數m的取值范圍.

分析 (1)運用奇函數的定義和單調性的定義,將b換為-b,即可得證;
(2)由f(x)在[-1,1]遞增,可得不等式組,注意定義域,解不等式即可得到所求解集;
(3)由題意可得由m<0,即m2-2≤f(x)-2mx的最小值,運用單調性不等式右邊函數的最小值,再解m的不等式即可得到所求范圍.

解答 解:(1)證明:∵f(x)是定義在[-1,1]上奇函數,
∴f(-x)=-f(x).
∵對任意的a,b∈[-1,1],當a+b≠0時,都有$\frac{f(a)+f(b)}{a+b}$>0,
∴-b∈[-1,1],$\frac{f(a)+f(-b)}{a+(-b)}$>0.
∴$\frac{f(a)-f(b)}{a-b}$>0,
∴當a>b時,f(a)>f(b),
當a<b時,f(a)<f(b),
∴由a、b的任意性知:f(x)在區間[-1,1]上單調遞增;
(2)由f(x)在[-1,1]遞增,
f(x-$\frac{1}{2}$)<f($\frac{1}{4}$-x),
可得$\left\{\begin{array}{l}{-1≤x-\frac{1}{2}≤1}\\{-1≤\frac{1}{4}-x≤1}\\{x-\frac{1}{2}<\frac{1}{4}-x}\end{array}\right.$,即$\left\{\begin{array}{l}{-\frac{1}{2}≤x≤\frac{3}{2}}\\{-\frac{3}{4}≤x≤\frac{5}{4}}\\{x<\frac{3}{8}}\end{array}\right.$,
可得-$\frac{1}{2}$≤x<$\frac{3}{8}$.
則原不等式解集為[-$\frac{1}{2}$,$\frac{3}{8}$);
(3)對于任意x∈[-1,1],m2+2mx-2≤f(x)恒成立,
由m<0,即m2-2≤f(x)-2mx的最小值,
由f(x)在[-1,1]遞增,2mx在[-1,1]遞減,
且f(1)=1,f(-1)=-f(1)=-1,
可得f(x)-2mx的最小值為-1+2m,
即有m2-2≤2m-1,即m2-2m-1≤0,
解得1-$\sqrt{2}$≤m<0.
則負數m的取值范圍為[1-$\sqrt{2}$,0).

點評 本題考查函數的奇偶性和單調性的運用,考查不等式恒成立問題的解法,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

16.如圖,在正方體ABCD-A1B1C1D1中.
( I)求證:AC⊥BD1
(Ⅱ)是否存在直線與直線 AA1,CC1,BD1都相交?若存在,請你在圖中畫出兩條滿足條件的直線(不必說明畫法及理由);若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知兩條直線l1:2x+y-2=0與l2:2x-my+4=0.
(1)若直線l1⊥l2,求直線l1與l2交點P的坐標;
(2)若l1,l2以及x軸圍成三角形的面積為1,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.如圖所示,在四棱臺ABCD-A1B1C1D1中,底面ABCD是平行四邊形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,∠BAD=60°.
(Ⅰ)證明:BD⊥平面ADD1A1
(Ⅱ)證明:CC1∥平面A1BD;
(Ⅲ)若DD1=AD,求直線CC1與平面ADD1A1所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知函數f(x)滿足:2f(x)•f(y)=f(x+y)+f(x-y),f(1)=$\frac{1}{2}$,且f(x)在[0,3]上單調遞減,則方程f(x)=$\frac{1}{2}$在區間[-2014,2014]內根的個數為1343.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.下列命題中為真命題的是(  )
A.命題“若x>1,則x2>1”的否命題B.命題“若x>y,則x>|y|”的逆命題
C.命題“若x=1,則x2+x-2=0”的否命題D.命題“若x2≥1,則x≥1”的逆否命題

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.下列變量關系是函數關系的是(  )
A.三角形的邊長與面積之間的關系
B.等邊三角形的邊長與面積之間的關系
C.四邊形的邊長與面積之間的關
D.菱形的邊長與面積之間的關

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.P為雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{{{a^2}-4}}=1(a>2)$上位于第一象限內一點,且$OP=2\sqrt{2}$,令∠POx=θ,則θ的取值范圍是(0,$\frac{π}{12}$].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.某工廠生產甲、乙兩種產品所得利潤分別為P和Q(萬元),它們與投入資金m(萬元)的關系有經驗公式P=$\frac{1}{3}$m+65,Q=76+4$\sqrt{m}$,今將150萬元資金投入生產甲、乙兩種產品,并要求對甲、乙兩種產品的投資金額不低于25萬元.
(1)設對乙產品投入資金x萬元,求總利潤y(萬元)關于x的函數關系式及其定義域;
(2)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美日韩二区三区 | 免费看片一区二区三区 | 一级免费片 | 区一区二区三在线观看 | 久久国产精品一区 | 中文日韩在线 | 国产精品久久精品 | 天天操天天拍 | 五月婷婷之综合激情 | 操人网址| 欧美日韩视频在线第一区 | 精品久久久一区 | 免费看一区二区三区 | 国产区亚洲 | 欧美日韩精品一区二区 | 在线精品亚洲欧美日韩国产 | 91久久精品久久国产性色也91 | 色综合天天综合网国产成人网 | 瑟瑟网站在线观看 | 国产欧美一区二区三区国产幕精品 | 国产三级在线 | 久久av资源 | av电影一区| 欧美日韩高清一区 | 亚洲视频在线播放 | 蜜桃视频麻豆女神沈芯语免费观看 | 国产高清视频在线观看 | 禁片天堂 | 国产精品九九九 | 91精品国产综合久久精品 | 欧美日韩国产高清 | 国产精品久久久久久久久久久久 | 中文字幕欧美日韩 | 一区二区免费看 | 欧美在线视频一区二区 | 欧美一级视频免费 | 久久99精品久久久 | 久久99国产精一区二区三区 | 亚洲一区二区三区精品视频 | 欧美日韩一区二区三区 | 久久久国产精品 |