日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
14.已知曲線 f(x)=(x+a)lnx(a∈R)在點(1,f(1))處的切線與直線x+y+1=0垂直.
(1)求a的值;
(2)若?x∈[1,+∞),f(x)≤m(x2-1)恒成立,求實數m的取值范圍;
(3)求證:lnn+$\frac{1}{2}+\frac{1}{2n}≤1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n},n∈{N_+}$.

分析 (1)求出導函數 f′(x)=lnx+$\frac{x+a}{x}$,利用切線與直線x+y+1=0垂直列出方程,即可求出a.
(2)設$g(x)=lnx-m({x-\frac{1}{x}})$,求出導數,通過①若m≤0,②$m≥\frac{1}{2}$時,$0<m<\frac{1}{2}$時,判斷函數的單調性求出最值,推出結果即可.
(3)利用$lnx≤\frac{1}{2}({x-\frac{1}{x}})$中,令$x=\frac{k}{k-1}$推出$ln\frac{k}{k-1}<\frac{1}{2}({\frac{k}{k-1}+\frac{1}{k}})({k≥2})$,然后證明結果即可.

解答 解:(1)曲線 f(x)=(x+a)lnx(a∈R),可得 f′(x)=lnx+$\frac{x+a}{x}$,
曲線 f(x)=(x+a)lnx(a∈R)在點(1,f(1))處的切線與直線x+y+1=0垂直,
可得$\frac{1+a}{1}=1$
解得:a=0.
(2)$?x∈({1,+∞}),lnx≤m({x-\frac{1}{x}})$恒成立,設$g(x)=lnx-m({x-\frac{1}{x}})$,即$?x∈({1,+∞}),g(x)≤0,g'(x)=\frac{1}{x}-m({1+\frac{1}{x^2}})=\frac{{-m{x^2}+x-m}}{x^2}$.
①若m≤0,g'(x)>0,g(x)≥g(1)=0,這與題設g(x)≤0矛盾.
②若m>0方程-mx2+x-m=0的判別式△=1-4m2
當△≤0,即$m≥\frac{1}{2}$時,g'(x)≤0,∴g(x)在(0,+∞)上單調遞減,g(x)≤g(1)=0,即不等式成立.
當$0<m<\frac{1}{2}$時,方程-mx2+x-m=0,其根${x_1}=\frac{{1-\sqrt{1-4{m^2}}}}{2m}>0,{x_2}=\frac{{1+\sqrt{1-4{m^2}}}}{2m}>1$,
當x∈(1,x2)g'(x)>0,g(x)單調遞增,g(x)>g(1)=0,與題設矛盾.綜上所述,$m≥\frac{1}{2}$.
(3)當n=1時,1≤1,當n≥2時,在$lnx≤\frac{1}{2}({x-\frac{1}{x}})$中,令$x=\frac{k}{k-1}$得$ln\frac{k}{k-1}<\frac{1}{2}({\frac{k}{k-1}+\frac{1}{k}})({k≥2})$,$ln\frac{k}{k-1}+\frac{1}{2k}-\frac{1}{{2({k-1})}}<\frac{1}{k}({k≥2}),1+\sum_{k=2}^n{[{ln\frac{k}{k-1}+\frac{1}{2k}-\frac{1}{{2({k-1})}}}]}<1+\sum_{k=2}^n{\frac{1}{k}}$,
即$lnn+\frac{1}{2}+\frac{1}{2n}≤1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n},n∈{N^*}$.

點評 本題考查函數的導數的應用,函數的單調性以及函數的最值,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

4.集合A={x|x2+2x>0},B={x|x2+2x-3<0},則A∩B=(  )
A.(-3,1)B.(-3,-2)C.RD.(-3,-2)∪(0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.一個樣本容量為8的樣本數據,它們按一定順序排列可以構成一個公差不為0的等差數列{an},若a3=5,且a1,a2,a5成等比數列,則此樣本數據的中位數是(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知f(x)=3x-2,若f(x)的圖象關于點A(2,1)對稱的圖象對應的函數為g(x),則g(x)的表達式為g(x)=3x-8.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.直線l經過點P(3,4),它的傾斜角是直線y=$\sqrt{3}$x+$\sqrt{3}$的傾斜角的2倍,求直線l的點斜式方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.下列說法錯誤的是(  )
A.在統計學中,獨立性檢驗是檢驗兩個分類變量是否有關系的一種統計方法
B.在殘差圖中,殘差分布的帶狀區域的寬度越狹窄,其模擬的效果越好
C.線性回歸方程對應的直線$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$至少經過其樣本數據點中的一個點
D.在回歸分析中,相關指數R2越大,模擬的效果越好

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.若x>0,y>0,且y+9x=xy,則x+y的最小值為16.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知直線l的點斜式方程為y+2=$\sqrt{3}$(x+1),則此直線的傾斜角為(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.數列1,1,2,3,x,8,13,21,…中的x值為5.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩欧美在线观看一区二区三区 | 亚洲一区在线播放 | 热久久这里只有精品 | 激情久久久久 | 久久久av一区 | 91亚洲精品久久久蜜桃网站 | 国产精品婷婷久久久久 | 三级亚洲 | 国产精品影院在线观看 | 午夜精品一区二区三区在线观看 | 日本一区二区三区四区 | 日韩aⅴ一区二区三区 | 欧美在线二区 | 欧美一级片免费观看 | 久久久久久亚洲 | 欧美激情精品久久久久久 | 国产 高清 在线 | 午夜婷婷色 | 国产精品亚洲精品久久 | 99久久99久久| 黄色片av | 黄色一级视频 | 99久久婷婷国产综合亚洲 | 一区二区三区欧美在线 | 国产成人精品免费视频大全 | 欧美一级做a爰片免费视频 在线不卡日韩 | 一区二区免费视频 | 一区二区三区视频免费在线观看 | 亚洲国产婷婷香蕉久久久久久 | 国产成在线观看免费视频 | 欧美成人一区二区三区片免费 | 成人在线免费观看视频 | 久久精品91| 精品久久久久久久久久久 | 三区av | 亚洲一区二区三区中文字幕 | 噜噜噜天天躁狠狠躁夜夜精品 | 亚洲视频一区二区三区四区 | 成人欧美一区二区三区在线播放 | 日韩爱爱网 | 欧美一区2区三区3区公司 |