分析 (1)求出導函數 f′(x)=lnx+$\frac{x+a}{x}$,利用切線與直線x+y+1=0垂直列出方程,即可求出a.
(2)設$g(x)=lnx-m({x-\frac{1}{x}})$,求出導數,通過①若m≤0,②$m≥\frac{1}{2}$時,$0<m<\frac{1}{2}$時,判斷函數的單調性求出最值,推出結果即可.
(3)利用$lnx≤\frac{1}{2}({x-\frac{1}{x}})$中,令$x=\frac{k}{k-1}$推出$ln\frac{k}{k-1}<\frac{1}{2}({\frac{k}{k-1}+\frac{1}{k}})({k≥2})$,然后證明結果即可.
解答 解:(1)曲線 f(x)=(x+a)lnx(a∈R),可得 f′(x)=lnx+$\frac{x+a}{x}$,
曲線 f(x)=(x+a)lnx(a∈R)在點(1,f(1))處的切線與直線x+y+1=0垂直,
可得$\frac{1+a}{1}=1$
解得:a=0.
(2)$?x∈({1,+∞}),lnx≤m({x-\frac{1}{x}})$恒成立,設$g(x)=lnx-m({x-\frac{1}{x}})$,即$?x∈({1,+∞}),g(x)≤0,g'(x)=\frac{1}{x}-m({1+\frac{1}{x^2}})=\frac{{-m{x^2}+x-m}}{x^2}$.
①若m≤0,g'(x)>0,g(x)≥g(1)=0,這與題設g(x)≤0矛盾.
②若m>0方程-mx2+x-m=0的判別式△=1-4m2,
當△≤0,即$m≥\frac{1}{2}$時,g'(x)≤0,∴g(x)在(0,+∞)上單調遞減,g(x)≤g(1)=0,即不等式成立.
當$0<m<\frac{1}{2}$時,方程-mx2+x-m=0,其根${x_1}=\frac{{1-\sqrt{1-4{m^2}}}}{2m}>0,{x_2}=\frac{{1+\sqrt{1-4{m^2}}}}{2m}>1$,
當x∈(1,x2)g'(x)>0,g(x)單調遞增,g(x)>g(1)=0,與題設矛盾.綜上所述,$m≥\frac{1}{2}$.
(3)當n=1時,1≤1,當n≥2時,在$lnx≤\frac{1}{2}({x-\frac{1}{x}})$中,令$x=\frac{k}{k-1}$得$ln\frac{k}{k-1}<\frac{1}{2}({\frac{k}{k-1}+\frac{1}{k}})({k≥2})$,$ln\frac{k}{k-1}+\frac{1}{2k}-\frac{1}{{2({k-1})}}<\frac{1}{k}({k≥2}),1+\sum_{k=2}^n{[{ln\frac{k}{k-1}+\frac{1}{2k}-\frac{1}{{2({k-1})}}}]}<1+\sum_{k=2}^n{\frac{1}{k}}$,
即$lnn+\frac{1}{2}+\frac{1}{2n}≤1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n},n∈{N^*}$.
點評 本題考查函數的導數的應用,函數的單調性以及函數的最值,考查轉化思想以及計算能力.
科目:高中數學 來源: 題型:選擇題
A. | (-3,1) | B. | (-3,-2) | C. | R | D. | (-3,-2)∪(0,1) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 在統計學中,獨立性檢驗是檢驗兩個分類變量是否有關系的一種統計方法 | |
B. | 在殘差圖中,殘差分布的帶狀區域的寬度越狹窄,其模擬的效果越好 | |
C. | 線性回歸方程對應的直線$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$至少經過其樣本數據點中的一個點 | |
D. | 在回歸分析中,相關指數R2越大,模擬的效果越好 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com