日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

10.已知數(shù)列{an}的前n項(xiàng)和Sn,且滿足Sn-Sn-1+2SnSn-1=0(n≥2),a1=$\frac{1}{2}$,則Sn=$\frac{1}{2n}$.

分析 Sn-Sn-1+2SnSn-1=0(n≥2),a1=$\frac{1}{2}$,可得$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,$\frac{1}{{S}_{1}}$=2.利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:Sn-Sn-1+2SnSn-1=0(n≥2),a1=$\frac{1}{2}$,
∴$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,$\frac{1}{{S}_{1}}$=2.
∴數(shù)列{$\frac{1}{{S}_{n}}$}是等差數(shù)列,公差為2,首項(xiàng)為2.
則$\frac{1}{{S}_{n}}$=2+2(n-1)=2n,解得Sn=$\frac{1}{2n}$.
故答案為:$\frac{1}{2n}$.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a+b>0,比較$\frac{a}{{b}^{2}}$+$\frac{b}{{a}^{2}}$與$\frac{1}{a}$+$\frac{1}{b}$的大小.并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在三角形ABC中,內(nèi)角A,B,C滿足cos2B-cos2C-sin2A=sinAsinB,則C=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.P(cosθ,2tanθ)位于第三象限,則么角θ所在象限是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.有一段演繹推理是這樣的:“直線平行于平面,則此直線平行于平面內(nèi)的所有直線;已知直線b∥平面α,直線a?平面α,則直線b∥直線a”.結(jié)論顯然是錯誤的,這是因?yàn)椋?).
(1)大前提錯誤    (2)推理形式錯誤     (3)小前提錯誤     (4)以上都錯誤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于點(diǎn)C、D的點(diǎn),AE=3,圓O的直徑為9.
(1)求證:平面ABCD⊥平面ADE;
(2)求DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1且an+1=2Sn+1(n∈N*);
數(shù)列{bn}中,b1=3且對n∈N*,點(diǎn)(bn,bn+1)都在函數(shù)y=x+2的圖象上.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)是否存在正整數(shù)n,使得a1b1+a2b2+…+anbn>100n?若存在,求n的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知橢圓方程為$\frac{x^2}{4}+\frac{y^2}{3}$=1,點(diǎn)$P(0,\sqrt{3})$.
i.若關(guān)于原點(diǎn)對稱的兩點(diǎn)A1(-2,0),B1(2,0),記直線PA1,PB1的斜率分別為${k_{P{A_1}}},{k_{P{B_1}}}$,試計算${k_{P{A_1}}}•{k_{P{B_1}}}$的值;
ii.若關(guān)于原點(diǎn)對稱的兩點(diǎn)${A_2}(\sqrt{3},\frac{{\sqrt{3}}}{2}),{B_2}(-\sqrt{3},-\frac{{\sqrt{3}}}{2})$,記直線PA2,PB2的斜率分別為${k_{P{A_2}}},{k_{P{B_2}}}$,試計算${k_{P{A_2}}}•{k_{P{B_2}}}$的值;
(2)根據(jù)上題結(jié)論探究:若M,N是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上關(guān)于原點(diǎn)對稱的兩點(diǎn),點(diǎn)Q是橢圓上任意一點(diǎn),且直線QM,QN的斜率都存在,并分別記為kQM,kQN,試猜想kQM•kQN的值,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如2x+2-x=5,求4x+$\frac{1}{{4}^{x}}$的值.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 网址av| 国产精品久久久久久久久久久不卡 | 欧美日韩中文字幕 | 久久久久久久一区 | 久久久久亚洲 | 色噜噜精品 | 日日噜噜噜噜久久久精品毛片 | 亚洲欧美日韩精品 | 午夜在线视频 | 日日摸日日碰夜夜爽不卡dvd | 黄色一级片在线观看 | 99精品在线免费 | 欧美a在线| 久爱国产| 欧美视频在线观看免费 | 久久99精品久久久久久秒播放器 | a中文在线| 青青青免费在线视频 | 爱爱视频免费 | 一区二区在线免费观看 | 亚洲日本中文 | 亚洲欧美在线免费 | 一级片在线观看 | 国产伦精品一区二区三区照片91 | 国产成人黄色 | 玖玖在线| 四虎永久 | 日本成人一区 | 欧美xo影院 | 久久精品国产亚洲一区二区三区 | 韩国毛片在线观看 | 国产小视频网站 | 国产精品毛片一区二区三区 | 一级爱爱片 | 亚洲免费在线视频 | 日本高清一二三 | 韩国三级中文字幕hd久久精品 | 久久高清亚洲 | 久久精品国产99国产 | 日韩av在线一区 | 亚洲最大成人 |