日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
2.已知f(x)=x2+mx+1(m∈R),g(x)=ex
(1)當x∈[0,2]時,F(x)=f(x)-g(x)為增函數,求實數m的取值范圍;
(2)設函數$G(x)=\frac{f(x)}{g(x)},H(x)=-\frac{1}{4}x+\frac{5}{4}$,若不等式G(x)≤H(x)對x∈[0,5]恒成立,求實數m的取值范圍.

分析 (1)F(x)=x2+mx+1-ex,求其導函數,由題意可得F'(x)=2x+m-ex≥0對x∈[0,2]恒成立,即m≥ex-2x.令h(x)=ex-2x,x∈[0,2],利用導數求其最大值,則m的范圍可求;
(2)$G(x)=\frac{f(x)}{g(x)}=\frac{{x}^{2}+mx+1}{{e}^{x}}$,$H(x)=-\frac{1}{4}x+\frac{5}{4}$.把不等式G(x)≤H(x)對x∈[0,5]恒成立轉化為${x^2}+mx+1≤{e^x}(-\frac{1}{4}x+\frac{5}{4})$對x∈[0,5]恒成立,令φ(x)=${e}^{x}(-\frac{1}{4}x+\frac{5}{4})$,利用導數求其單調性,作出φ(x)的大致圖象,數形結合可得答案.

解答 解:(1)∵f(x)=x2+mx+1,g(x)=ex,
∴F(x)=x2+mx+1-ex,得F'(x)=2x+m-ex
又∵x∈[0,2]時F(x)為增函數,∴F'(x)=2x+m-ex≥0對x∈[0,2]恒成立,即m≥ex-2x.
令h(x)=ex-2x,x∈[0,2],則h'(x)=ex-2,由h'(x)=0,解得x=ln2.
當x∈(0,ln2)時,h'(x)<0,當x∈(ln2,2)時,h'(x)>0,
∴h(x)在[0,ln2]單調遞減;在(ln2,2]單調遞增,
又∵h(0)=1,h(2)=e2-4>1,
∴$h{(x)_{max}}=h(2)={e^2}-4$,
∴m≥e2-4;
(2)$G(x)=\frac{f(x)}{g(x)}=\frac{{x}^{2}+mx+1}{{e}^{x}}$,$H(x)=-\frac{1}{4}x+\frac{5}{4}$.
不等式G(x)≤H(x)對x∈[0,5]恒成立,即${x^2}+mx+1≤{e^x}(-\frac{1}{4}x+\frac{5}{4})$對x∈[0,5]恒成立,
令φ(x)=${e}^{x}(-\frac{1}{4}x+\frac{5}{4})$,則φ′(x)=${e}^{x}(-\frac{1}{4}x+1)$,
令φ'(x)=0,得x=4,
當x∈(-∞,4)時,φ′(x)>0,當x∈(4,+∞)時,φ′(x)<0,
∴φ(x)在(-∞,4)單調遞增;在(4,+∞)上單調遞減,
又∵φ(x)=0有唯一零點x=5,作出函數φ(x)的圖象如圖:
∵當x=0時,x2+mx+1=1<${e}^{0}(-\frac{1}{4}×0+\frac{5}{4})=\frac{5}{4}$成立.
∴要滿足r(x)=x2+mx+1≤φ(x)對x∈[0,5]恒成立,
只需r(5)≤0,即26+5m≤0,解得$m≤-\frac{26}{5}$.

點評 本題考查利用導數研究函數的單調性,考查利用導數求函數的最值,體現了數學轉化思想方法和數形結合的解題思想方法,屬難題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.如圖,設Ox、Oy是平面內相交成45°角的兩條數軸,$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$分別是x軸、y軸正方向同向的單位向量,若向量$\overrightarrow{OP}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,則把有序數對(x,y)叫做向量$\overrightarrow{OP}$在坐標系xOy中的坐標,在此坐標系下,假設$\overrightarrow{OA}$=(-2,2$\sqrt{2}$),$\overrightarrow{OB}$=(2,0),$\overrightarrow{OC}$=(5,-3$\sqrt{2}$),則下列命題不正確的是( 。
A.$\overrightarrow{{e}_{1}}$=(1,0)B.|$\overrightarrow{OA}$|=2$\sqrt{3}$C.$\overrightarrow{OA}$∥$\overrightarrow{BC}$D.$\overrightarrow{OA}$⊥$\overrightarrow{OB}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為$({\sqrt{3},0})$,
(1)求雙曲線C的標準方程;
(2)求雙曲線C的離心率;
(3)求雙曲線C的漸近線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知圓M:(x-2a)2+y2=4a2與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)交于A、B兩點,點D為圓M與x軸正半軸的交點,點E為雙曲線C的左頂點,若四邊形EADB為菱形,則雙曲線C的離心率為(  )
A.$\frac{\sqrt{5}}{2}$B.3C.$\frac{\sqrt{10}}{2}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.曲線y=2sinx(0≤x≤π)與直線y=1圍成的封閉圖形的面積為( 。
A.$2\sqrt{3}-\frac{4π}{3}$B.$2\sqrt{3}-\frac{2π}{3}$C.$2\sqrt{3}+\frac{4π}{3}$D.$2\sqrt{3}+\frac{2π}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.設{an}為遞減等比數列,a1+a2=11,a1•a2=10則lga1+lga2+…+lga10=-35.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知復數z1=1-2i,z2=3+4i,i為虛數單位.
(Ⅰ)若復數|z2|+az1對應的點在第四象限,求實數a的取值范圍;
(Ⅱ)若z(z1+z2)=z1-z2,求z的共軛復數.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.設雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(0<a<b)的半焦距為c,直線L過(b,0),(0,a)兩點.已知原點到直線L的距離為$\frac{2c}{5}$,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$B.$\frac{5}{4}$或5C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.球O為正方體ABCD-A1B1C1D1的內切球,AB=2,E,F分別為棱AD,CC1的中點,則直線EF被球O截得的線段長為$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 剑来高清在线观看 | 精品一区二区国产 | 久久久久网站 | 欧美黄色一级毛片 | 欧美精品1区| 伊人网亚洲| 日本一二三区在线 | 日韩一区二区在线播放 | 一本一道久久a久久精品综合蜜臀 | 国产成人精品在线观看 | 曰曰操 | 成年人福利 | 一本色道久久综合狠狠躁的推荐 | 欧美高清国产 | 97在线免费视频 | 美日韩精品视频 | 国产精选视频 | 久久窝| 国产精品自拍av | 久久久tv| 国精产品一区一区三区在线观看 | 免费一区二区视频 | 2020天天操 | 欧美日韩在线免费观看 | 成人黄色一级片 | 色婷婷av久久久久久久 | 欧洲成人午夜免费大片 | 亚洲成人免费 | 久久69国产一区二区蜜臀 | 欧美日韩在线播放 | 国产在线一 | 国产精品1页 | 国产一区二区三区四 | 毛片免费观看 | 天天看天天操 | 天天干一干 | 国产一区视频在线 | 日本久久网 | 亚洲一区二区三区精品视频 | 国产成人综合在线 | 又大又粗又长又黄视频 |