日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

20.已知數(shù)列{an}的相鄰兩項(xiàng)an,an+1是關(guān)于x的方程x2-2nx+A=0的兩根,且a1=1.
(1)求證:數(shù)列$\{{a_n}-\frac{1}{3}•{2^n}\}$是等比數(shù)列;
(2)若${b_n}={log_2}[3{a_n}+{(-1)^n}]$,證明:對一切正整數(shù)n,有$\frac{1}{{{b_1}({b_1}+2)}}+\frac{1}{{{b_2}({b_2}+2)}}+…+$$\frac{1}{{{b_n}({b_n}+2)}}<\frac{3}{4}$.

分析 (1)利用an,an+1是關(guān)于x的方程x2-2n•x+A=0(n∈N*)的兩實(shí)根,可得an+an+1=2n,整理變形可得數(shù)列{an-$\frac{1}{3}$x2n}是等比數(shù)列;
(2)根據(jù)對數(shù)的運(yùn)算性質(zhì)和裂項(xiàng)求和和放縮法即可證明.

解答 解:(Ⅰ)∵an,an+1是關(guān)于x的方程x2-2nx+A=0,(n∈N*)的兩根,∴an+an+1=2n,
∴an+1-$\frac{1}{3}$×2n+1=-(an-${\;}^{\frac{1}{3}}$•2n),
∵a1=1,
∴a1-${\;}^{\frac{1}{3}}$•21=$\frac{1}{3}$
∴{an-${\;}^{\frac{1}{3}}$•2n}是$\frac{1}{3}$為首項(xiàng),以-1為等比的等比數(shù)列;
(2)證明:由(1)可得an-${\;}^{\frac{1}{3}}$•2n=$\frac{1}{3}$(-1)n-1,
∴an=$\frac{1}{3}$[2n-(-1)n],
∴3an+(-1)n]=2n,
∴bn=n,
∴$\frac{1}{_{n}(_{n}+2)}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$)
∴$\frac{1}{{{b_1}({b_1}+2)}}+\frac{1}{{{b_2}({b_2}+2)}}+…+$$\frac{1}{_{n}(_{n}+2)}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+($\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)<$\frac{3}{4}$.

點(diǎn)評 本題主要考查等比關(guān)系的確定、數(shù)列的求和等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f($\sqrt{x}$+1)=x+3$\sqrt{x}$-1,則f(2)=( 。
A.3B.5C.3$\sqrt{2}$+1D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.$\frac{{cos{{36}°}\sqrt{1-sin{{18}°}}}}{{cos{{18}°}}}$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若二次函數(shù)y=x2+2(a-1)x+b在區(qū)間(3,+∞)上為減函數(shù),那么(  )
A.a<-2B.a≥-2C.a>-2D.a≤-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知兩個(gè)定點(diǎn)A(-1,0)、B(2,0),求使∠MBA=2∠MAB的點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在正三棱錐P-ABC中,E、F分別為棱PA、AB的中點(diǎn),且EF⊥CE.
(1)求證:直線PB∥平面EFC;
(2)求證:平面PAC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知m∈R,$\overrightarrow{a}$=(-1,x2+m),$\overrightarrow$=(m+1,$\frac{1}{x}$),
(1)$\overrightarrow{c}$=(-m,$\frac{x}{x+m}$),當(dāng)m=-1時(shí),求使不等式|$\overrightarrow a$•$\overrightarrow c$|≤1成立的x的取值范圍;
(2)求使不等式$\overrightarrow a•\overrightarrow b$≥0成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若tan(θ+$\frac{π}{4}$)=2,則$\frac{sinθ+cosθ}{sinθ-cosθ}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.計(jì)算  (lg2)2+lg2•lg50+lg25 的值是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 久久亚洲一区 | 操老逼 | 中文字幕在线第一页 | 91小视频| 综合伊人 | 日韩av免费在线观看 | 欧美一区二区三区在线观看视频 | 色久视频| 国产精品毛片久久久久久久 | 嗯嗯嗯亚洲精品国产精品一区 | 娇小12-13╳yⅹ╳毛片 | 国产精品九九九 | 草草影院浮力 | 三区中文字幕 | 久久毛片 | 日韩欧美二区 | www.国产91| 中文字幕第一页久久 | 亚洲精品久久久久久久久久久 | 一区二区在线免费观看 | 精品一区二区三区免费看 | 一级黄色录像免费观看 | 日本在线一区二区三区 | 亚洲成人福利 | 日韩精品一区二区三区免费视频 | 国产精品久久av | 精品在线播放 | 久久久久久高清 | av成人免费 | 亚洲精品一区二区三区 | 一级毛片大全免费播放 | 欧美日韩中文字幕 | 国偷自拍| 九九热精品免费视频 | 超碰在线播 | 久久精品国产精品 | 99视频在线看 | 日韩精品免费在线观看 | 欧美日韩在线免费观看 | 日韩欧美在线播放 | 91午夜在线 |