A. | $\frac{2π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
分析 根據兩個向量的數量積的值,整理出兩個向量之間的關系,得到兩個向量的數量積2倍等于向量的模長的平方,寫出求夾角的公式,得到結果.
解答 解:設$\overrightarrow{a}$與$\overrightarrow{b}$的夾角為θ,
∵非零向量$\overrightarrow{a}$,$\overrightarrow{b}$滿足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,且(2$\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{b}$=0,
∴(2$\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{b}$=2$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=2|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cosθ+${\overrightarrow{b}}^{2}$=0,
∴cosθ=-$\frac{1}{2}$
∵0≤θ≤π
∴θ=$\frac{2}{3}$π,
故選:A
點評 本題考查數量積表示兩個向量的夾角,本題解題的關鍵是整理出兩個向量的數量積與模長之間的關系.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $[\frac{1}{e}$,+∞) | B. | $[-\frac{1}{e}$,+∞) | C. | (0,e) | D. | $[-\frac{1}{e}$,0) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com