A. | 增函數 | B. | 減函數 | C. | 奇函數 | D. | 偶函數 |
分析 利用原函數與反函數的關系:原函數的值域是反函數的定義域,即可求底數a,k的值,在利用函數的基本性質判斷函數y=x-a即可.
解答 解:由題意:函數f(x)=loga(x-k)的圖象過點(4,0),又其反函數f-1(x)的圖象過點(1,7),
∴有$\left\{\begin{array}{l}{0=lo{g}_{a}(4-k)}\\{1=lo{g}_{a}(7-k)}\end{array}\right.$,解得:a=4,k=3.
所以函數y=g(x)=x-a=x-4=$(\frac{1}{x})^{4}$
∵g(-x)=$(\frac{1}{-x})^{4}$=$(\frac{1}{x})^{4}$=g(x)
∴函數y=g(x)=x-a是偶函數.
故選D.
點評 本題考查了原函數與反函數的關系,和函數基本性質的判斷.屬于基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 5,4 | B. | 5,3 | C. | 3,5 | D. | 4,5 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | $\frac{3}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-2,0)∪(2,+∞) | B. | (-∞,2)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com