分析 利用空間距離公式求出三角形三個邊的邊長,即可判斷三角形的形狀.
解答 解:因為:A(1,2,1),B(1,1,0),C(0,2,0),
所以:AB=$\sqrt{(1-1)^{2}+(2-1)^{2}+(1-0)^{2}}$=$\sqrt{2}$,
BC=$\sqrt{(1-0)^{2}+(1-2)^{2}+(0-0)^{2}}$=$\sqrt{2}$,
AC=$\sqrt{(1-0)^{2}+(2-2)^{2}+(1-0)^{2}}$=$\sqrt{2}$.
所以:AB=BC=AC,
所以:該三角形是等邊三角形.
故答案是:等邊三角形.
點評 本題考查三角形形狀的判斷,空間兩點距離公式的應用,考查計算能力,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 12 | B. | $\frac{14}{3}$ | C. | $6+3\sqrt{5}$ | D. | $11+3\sqrt{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-2,+∞) | B. | (-2,+∞) | C. | (-2,0)∪(0,+∞) | D. | [-2,0)∪(0,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a1 | B. | a3 | C. | a5 | D. | 不能確定 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com