分析 (1)設出一次函數的解析式,利用待定系數法求解.
(2)根據分數指數冪進行計算即可.
解答 解:(1)f(x)是一次函數,設f(x)=kx+b,(k≠0)
∵f[f(x)]=4x+3,
則有:k(kx+b)+b=4x+3,
化簡得:k2x+kb+b=4x+3
由$\left\{\begin{array}{l}{{k}^{2}=4}\\{kb+b=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=2}\\{b=1}\end{array}\right.$或$\left\{\begin{array}{l}{k=-2}\\{b=5}\end{array}\right.$
∴函數f(x)的解析式為f(x)=2x+1或f(x)=-2x+5.
(2)64${\;}^{-\frac{1}{3}}$-(-$\frac{3\sqrt{2}}{2}$)0+[(2)-3]${\;}^{\frac{4}{3}}$+16-0.75.
原式=$(\frac{1}{{4}^{3}})^{\frac{1}{3}}$-1+[$(2)^{-3×\frac{4}{3}}$]+$(\frac{1}{16})^{\frac{3}{4}}$
=$\frac{1}{4}$-1+$\frac{1}{16}$+$\frac{1}{8}$
=-$\frac{9}{16}$
點評 本題考查了待定系數法求解函數解析式的問題以及分數指數冪的運算.屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 4與3 | B. | 7和3 | C. | 7和12 | D. | 4和 12 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $[-\frac{3}{4},0)$ | B. | [-1,1) | C. | $[-\frac{1}{2},1)$ | D. | [-1,0) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [0,1) | B. | [0,2) | C. | (1,2) | D. | [0,1)∪(1,2) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com