A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | -5 | D. | 5 |
分析 利用任意角的三角函數的定義求得tanθ的值,再利用兩角差的正切公式求得tan($\frac{11π}{4}$+θ)的值.
解答 解:∵角θ的終邊過點(2,3),∴tanθ=$\frac{3}{2}$,
則tan($\frac{11π}{4}$+θ)=tan(θ-$\frac{π}{4}$+3π)=tan(θ-$\frac{π}{4}$)=$\frac{tanθ-1}{1+tanθ}$=$\frac{\frac{3}{2}-1}{1+\frac{3}{2}}$=$\frac{1}{5}$,
故選:B.
點評 本題主要考查任意角的三角函數的定義,兩角差的正切公式的應用,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\overline{y}$=2$\overline{x}$+3,sB2=2sB2+3 | B. | $\overline{y}$=2$\overline{x}$+3,sB2=4sA2 | ||
C. | $\overline{y}$=2$\overline{x}$,sB2=4sA2 | D. | $\overline{y}$=2$\overline{x}$,sB2=4sA2+3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
數學 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com