分析 根據(jù)$(\overrightarrow{a}-\overrightarrow{b})•(\overrightarrow{a}+\overrightarrow{b})=-15$及$|\overrightarrow{a}|=\sqrt{10}$即可求出$|\overrightarrow{b}|$的值,再根據(jù)$\overrightarrow{a}•\overrightarrow{b}=-\frac{5\sqrt{30}}{2}$即可求出$cos<\overrightarrow{a},\overrightarrow{b}>$的值,從而得出向量$\overrightarrow{a},\overrightarrow{b}$的夾角.
解答 解:$(\overrightarrow{a}-\overrightarrow{b})•(\overrightarrow{a}+\overrightarrow{b})={\overrightarrow{a}}^{2}-{\overrightarrow{b}}^{2}$=$10-|\overrightarrow{b}{|}^{2}=-15$;
∴$|\overrightarrow{b}|=5$;
∴$\overrightarrow{a}•\overrightarrow{b}=|\overrightarrow{a}||\overrightarrow{b}|cos<\overrightarrow{a},\overrightarrow{b}>$=$5\sqrt{10}cos<\overrightarrow{a},\overrightarrow{b}>=-\frac{5\sqrt{30}}{2}$;
∴$cos<\overrightarrow{a},\overrightarrow{b}>=-\frac{\sqrt{3}}{2}$;
∴$\overrightarrow{a},\overrightarrow{b}$的夾角為$\frac{5π}{6}$.
故答案為:$\frac{5π}{6}$.
點評 考查數(shù)量積的運(yùn)算及計算公式,向量夾角的范圍,以及已知三角函數(shù)值求角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-8)∪(3,+∞) | B. | (-8,3) | C. | (-∞,-8) | D. | (3,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com