分析 把條件sinA+cosA=$\frac{1}{5}$,平方可得sinAcosA的值,A為鈍角,且 tanA<-1.再利用同角三角函數的基本關系求得tanA的值.
解答 解:∵A是△ABC的一個內角,sinA+cosA=$\frac{1}{5}$,平方可得 1+2sinAcosA=$\frac{1}{25}$,
∴sinAcosA=-$\frac{12}{25}$,∴A為鈍角,且sinA>|cosA|,∴tanA<-1.
再根據sinAcosA=$\frac{sinAcosA}{{sin}^{2}A{+cos}^{2}A}$=$\frac{tanA}{{tan}^{2}A+1}$=-$\frac{12}{25}$,∴tanA=-$\frac{3}{4}$(舍去),或 tanA=-$\frac{4}{3}$,
故答案為:-$\frac{12}{25}$;-$\frac{4}{3}$.
點評 本題主要考查同角三角函數的基本關系,以及三角函數在各個象限中的符號,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com